01/18: Team Status Reports

The Capstone Experience

Dr. Wayne Dyksen
Department of Computer Science and Engineering
Michigan State University
Spring 2018
AMAP: Automated Malware Analysis Platform

• Project Overview
 ▪ Having 268 million malware samples and growing at 300k per day.
 ▪ Categorize based on types, detection signatures byte patterns etc.
 ▪ Storing relevant information of samples in database.
 ▪ Results could be more samples of IP addresses and domains targeted.

• Project Plan Document
 ▪ Getting forward on technical specifications with client this week.
 ▪ Have a general outline.
 ▪ Most of the functional specifications just figured out.
 ▪ Overall progress: ~10%.
Team Accenture

Status Report

AMAP: Automated Malware Analysis Platform

• Server Systems / Software
 ▪ Windows 10 VM
 ▪ Ubuntu VM (Waiting to receive from client)
 ▪ Amazon AWS (Waiting to receive from client)

• Development Systems / Software
 ▪ iDefence IntelGraph (API access)
 ▪ iDefence Malware repository.
 ▪ Database (MongoDB, MySQL)
Team Accenture

Status Report

AMAP: Automated Malware Analysis Platform

• Client Contact
 ▪ Contacted with client last Thursday (in person).
 ▪ Daily communication on Slack.

• Team Meetings
 ▪ Had 4 team meetings
 ▪ Plan to meet twice a week.

• Team Organization
 ▪ Client contact Andrew.
 ▪ Rotate team lead.
 ▪ Every team member is considered a developer.
AMAP: Automated Malware Analysis Platform

Risks

• Risk 1
 ▪ Can we actually identify malware?
 ▪ Looking up how malware stored in the different file types.

• Risk 2
 ▪ Can we actually find how one malware sample connected to another?
 ▪ Learning how the iDefence tools can help detect patterns and malware samples.

• Risk 3
 ▪ Can we properly use iDefence tools?
 ▪ Using documentation from client.

• Risk 4
 ▪ How to process in multi-threaded environment?
 ▪ Looking tutorials on multi-thread programs.
AMPERED

• Project Overview
 ▪ Loyal, well-educated listeners
 ▪ Episode sponsors provide the main source of revenue
 ▪ Primary goal: recommend relevant Amazon products based on podcast audio content
 ▪ Content producers will receive commission on recommended item revenue
 ▪ Machine learning model and robust API are top priority
 ▪ Front end and UI are secondary

• Project Plan Document
 ▪ Functional specifications well defined by client
 ▪ Primary features identified
 ▪ System components identified
 ▪ System architecture diagram outlined
 ▪ Risks/mitigation identified
 ▪ ≈ 40% Complete
Team Amazon

Status Report

AMPED

• Server Systems / Software
 ▪ AWS EC2, RDS, Elasticache, S3, Beanstalk (Infrastructure)
 ▪ AWS Lambda, API Gateway, Route 53 (Front-end facility)
 ▪ AWS Transcribe, Comprehend, SQS, SNS (Middle-ware)

• Development Systems / Software
 ▪ Ubuntu Server, GitLab.MSU, Google Drive, Slack, Trello
 ▪ JavaScript, Python, AWS Services and APIs
 ▪ Web application first, with portability in mind
Team Amazon

Status Report

AMPED

• Client Contact
 ▪ Remote conference call, 9:00 AM every Friday
 ▪ In-person meetings are planned

• Team Meetings
 ▪ Three set meeting times per week
 ▪ 1 Hour meetings

• Team Organization
 ▪ Front-end focused workgroup
 ▪ Back-end focused, and research workgroup
Team Amazon

Status Report

AMPED

Risks

• Risk 1
 ▪ Recommending an item which has been negatively described
 ▪ Machine learning and sentiment analysis (feature of AWS Comprehend)

• Risk 2
 ▪ Controversial or inappropriate subjects
 ▪ Blacklist specific terms, utilize ‘IsAdultProduct’ attribute included in API

• Risk 3
 ▪ Portability, deployment, scalability
 ▪ Separation between back-end (APIs) and front-end (UIs)

• Risk 4
 ▪ Statistics and revenue reports for podcasters (stretch goal)
 ▪ Utilize Amazon affiliate program for purchase tracking
Team Aptiv

Status Report

Cyber Security Management System

• Project Overview
 ▪ Interdepartmental communications/information sharing suite
 o Information sharing between developer and security teams
 ▪ Automation of the entire cybersecurity process
 o Assessment request
 o Threat Analysis & Risk Assessment (TARA)
 o Vulnerability/Penetration Assessment
 o Vulnerability Remediation
 o Final Report

• Project Plan Document
 ▪ Not started
 o Client changed the full project proposal several times
Team Aptiv

Status Report

Cyber Security Management System

• Server Systems / Software
 ▪ WebApp
 o Javascript
 o HTML,CSS
 o PHP
 ▪ Database
 o MySQL
 ▪ Vmware ESXi – Hypervisor (VM Platform)

• Development Systems / Software
 ▪ WebStorm/PHPStorm
 ▪ Git repo
Team Aptiv
Status Report

Cyber Security Management System
• Client Contact
 ▪ Weekly Conference Calls (x2)
 ❖ Tuesdays 2:00-2:45pm
• Team Meetings (x2)
 ▪ Reviewed client proposal
 ▪ Change project proposal
 ▪ Met with Dr. Enbody/Pranshu Bajpai
 ▪ Weekly Team Meetings
 ❖ Monday 4:30-6pm
• Team Organization
 ▪ Developing the Cyber Security Management System
Cyber Security Management System

Risks

• Application security
 ▪ Software/Database will hold all of Aptiv’s data (schematics, software, vulnerabilities, etc.) for all of their products
 ▪ Project advisors (Pranshu/Enbody) have commercial web app pen-testing experience, and we will be implementing best practice security measures as we develop the system

• Database Implementation
 ▪ Best way to design a database to accommodate fast retrieval, and manage information for user-base with a wide range of specific permissions
 ▪ Focus initial development on strong database design instead of focusing on other things like the UI

• Knowledge of client procedure
 ▪ No knowledge of client complex process from start to finish vulnerability testing
 ▪ Reviewing documentation, close contact with client while constant prototyping

• Scalability issues with users
 ▪ How well the database will handle multiple users doing the same operations
 ○ Aptiv has 147,000 employees
 ▪ Use a cloud service (Amazon) instead of in-house servers to handle workload
Team Auto-Owners

Status Report

IMAGINE: IMAGe INtake Experience

• Project Overview
 ▪ Object recognition and classification of physical environments for insurance purposes
 ▪ Users load 360° images into web application
 ▪ Web-viewable database for inventory of identified objects
 ▪ Unity VR application to fully experience the environment

• Project Plan Document
 ▪ Have begun rough draft of Project Plan Document
 ▪ Currently reviewing project requirements, calculating risks and mitigation strategies, and designing overall system architecture
 ▪ Confirming overall plan with client on 1/19
 ▪ 20% Complete
Team Auto-Owners

Status Report

IMAGINE: IMAGe INtake Experience

• Server Systems / Software
 ▪ Capstone Server with Ubuntu Server – Up but Firewall Issues
 ▪ Apache Web Server with PHP – Up and Configured
 ▪ MariaDB – Up and Configured but potential Firewall Issues

• Development Systems / Software
 ▪ Unity Game Development Studio- Configuring
 ▪ Windows Machine with Oculus Rift and Controllers – Acquiring (Oculus Rift and Controllers have been acquired)
 ▪ OpenCV and TensorFlow - Configuring
Team Auto-Owners

Status Report

IMAGINE: IMAGe INtake Experience

• Client Contact
 ▪ Met with client at their headquarters in Lansing, MI on Monday 1/15/2018 from 11:30am to 1:30pm.
 ▪ Plan to have weekly conference calls on Fridays at 11:30am

• Team Meetings
 ▪ Have had three team meetings thus far
 ▪ Official team meetings are planned for Thursday after class

• Team Organization
 ▪ Tasks will be specialized between members
 ▪ 3 groups – Classifier Systems, Virtual Reality, Web Interface
Team Auto-Owners

Status Report

IMAGINE: IMAGe INtake Experience

Risks

• Object recognition in spherical images
 ▪ 3D images have distorted pixel densities and will make classifying difficult
 ▪ Normalize 3D images to 2D or include warped images when training our classifier

• Inability to classify an environment
 ▪ Environments should be classified based on types of objects found (i.e. bedroom, office, etc.)
 ▪ Train negative classifiers to drop incompatible environments

• Multiple concurrent users
 ▪ Multiple separate workflows will need to be able to be accessed by all users
 ▪ Manage interactions with a user system using transactions to enforce ACID

• Server Access Limited by MSU Firewall
 ▪ MSU has unknown firewall rules that prevent some outside communications
 ▪ Determine what is prohibited and pipeline traffic through approved channels
Team Dow

Status Report

Virtual Reality Simulation for Railcar Loading

• Project Overview
 ▪ Teach How to Load a Railcar Safely
 ▪ Achieved Through First Person Virtual Reality

• Project Plan Document
 ▪ Table of Contents Finished
 ▪ Executive Summary Started
 ▪ Risk Analysis Finished
 ▪ Schedule Drafted
 ▪ 20% Complete
Team Dow

Status Report

Virtual Reality Simulation for Railcar Loading

- Server Systems / Software
 - No Servers

- Development Systems / Software
 - Computer with GTX 1060 or better (obtained)
 - HTC Vive Headset (obtained)
 - Unity Game Engine (installed)
 - Maya 3D (installed)
 - Photoshop CS6 (installed)
 - Audacity (installed)
Team Dow

Status Report

Virtual Reality Simulation for Railcar Loading

• Client Contact
 ▪ Emailed twice and had conference call
 ▪ Weekly conference calls Friday at 12:30pm

• Team Meetings
 ▪ Weekly meetings on Tuesdays at 4:30pm
 ▪ Weekly meetings with Johnny on Thursdays at 4:40pm

• Team Organization
 ▪ Using GroupMe group chat for instant communication
 ▪ Using Trello for project role/tasks organization
Virtual Reality Simulation for Railcar Loading

Risks

• Unity Game Engine
 ▪ Description: Understand development with Unity
 ▪ Mitigation: Follow online tutorials through Unity, websites, YouTube, etc.

• Vive VR Development
 ▪ Description: Understand how HTC Vive works with Unity and what works in a VR environment
 ▪ Mitigation: Follow online tutorials, build test scenes for basic VR interaction

• Project Assets
 ▪ Description: Acquiring realistic models and sounds for development
 ▪ Mitigation: Search Unity Asset store and royalty free websites for assets

• Accurate Simulation
 ▪ Description: Accurately replicating scenario of loading railcars
 ▪ Mitigation: Watch/analyze videos of proper railcar loading/filling
Team DRIVEN-4

Status Report

2020 Business in a Box

• Project Overview
 ▪ Base on Internet of Things (IoT) architecture
 ▪ Showcase future business environment with 2020 as target
 ▪ Model a connected product utilizing Wi-Fi for connectivity
 ▪ Develop manufacturing processes and artifacts
 ▪ Demonstrate capabilities for collaboration and integration

• Project Plan Document
 ▪ Have not started
Team DRIVEN-4

Status Report

2020 Business in a Box

• Server Systems / Software
 ▪ No server needed

• Development Systems / Software
 ▪ CAD – Siemens NX, PTC Creo
 ▪ PLM – Siemens Teamcenter, PTC Windchill
 ▪ IoT Platform – PTC Thingworx, Siemens MindSphere
 ▪ AR/VR – PTC Thingworx Studio
 ▪ Factory Floor Simulation – Siemens Tecnomatrix
 ▪ Waiting on access
Team DRIVEN-4
Status Report

2020 Business in a Box
• Client Contact
 ▪ Conference calls scheduled for Fridays at 1pm
 ◦ One so far
 ▪ In-person meeting scheduled for Thursday 11/18
• Team Meetings
 ▪ Two so far
 ▪ Weekly meetings on Wednesdays
• Team Organization
 ▪ Client Contact – Sam Coffey
 ▪ Technical roles not defined at this time
Team DRIVEN-4

Status Report

2020 Business in a Box

Risks

• Embedded Software Design Experience
 ▪ No team members have experience with embedded software design
 ▪ Individual research and training from DRIVEN-4

• Product Use Visualization
 ▪ No team members have experience with visualization design
 ▪ View examples provided by DRIVEN-4 and research visualization design fundamentals and samples

• Hardware Familiarization
 ▪ Can’t get familiarized with hardware until received
 ▪ Meeting scheduled to receive hardware

• Hardware-Software Interaction
 ▪ Need to determine how to get devices interacting
 ▪ Get training from DRIVEN-4 once devices received
Team GM

Status Report

Plato

• Project Overview
 ▪ Artificially Intelligent Dev Bot for Microsoft Teams
 ▪ Create and Manage Virtual Machines via Bot and Web App
 ▪ Manage and Run Test Cases
 ▪ Provide Single Unified Environment for Developers

• Project Plan Document
 ▪ 20% complete
 ▪ Outline done, schedule done
 ▪ Working on database schema, system diagram, architecture
 ▪ Working on functional and design specifications
Team GM
Status Report

Plato

• Server Systems / Software
 ▪ Obtained Microsoft Teams Account from GM
 ▪ Setup Microsoft Team for testing
 ▪ SQLServer Standard 2017 getting set up

• Development Systems / Software
 ▪ VMWare and Windows 10 installed on both iMacs
 ▪ Visual Studio, Azure, and Microsoft Teams installed
 ▪ Hello World Bot written with MBF
Plato

- **Client Contact**
 - Established Weekly meeting (Tuesday 9 - 10AM)
 - Requirement specification meeting tomorrow 1-2PM
 - Have had 2 total client meetings

- **Team Meetings**
 - First Triage meeting before class at 2:20PM
 - 3 total team meetings
 - Team meetings scheduled for 4:30-5:00PM Tuesday/Thursday – more to come.

- **Team Organization**
 - Client Contact/Project Manager: Colin Coppersmith
 - Web Application Development: Tao Tao/Colin Coppersmith
 - Backend and Bot Developer: Matthew Eaton/Simeon Goolsby/Alex Lepird
Team GM

Status Report

Plato

Risks

• Controlling and managing Virtual Machines programatically
 ▪ Description: No experience with CRUD using a programming language.
 ▪ Mitigation: Use C# backend to communicate with Azure.

• Implementing acceptable language processing to ensure bot can understand commands effectively
 ▪ Description: Thousands of ways to execute each command.
 ▪ Mitigation: Use grammars and NLP to fill in the blanks.

• Integrating Microsoft TFS to automate Test case creation and testing
 ▪ Description: GM uses TFS to test applications, no experience using it.
 ▪ Mitigation: Gather unit tests from GM, try to emulate style.

• Customizing bot interaction based off team/ individual user
 ▪ Description: Need to tailor to the needs of each team/user.
 ▪ Mitigation: Using emails/IDs to determine which user against records.
AR Adjust App
• Project Overview
 ▪ Native iOS app for customers using Herman Miller adjustable office chairs
 ▪ Augmented Reality detects and identifies model of chair from camera
 ▪ AR technology highlights adjustable parts and shows tooltip descriptions of adjustments for that model

• Project Plan Document
 ▪ Writing the rough draft
 ▪ Overall ~10% complete
 ▪ Basic points on the design, functional and technical specifications
 ▪ Early screen mockups
Team Herman Miller

Status Report

AR Adjust App

• Server Systems / Software
 ▪ Windows Server – Setting up currently
 ▪ Git for source control

• Development Systems / Software
 ▪ Unity3d – Up and running
 ▪ Vuforia (for AR) – Testing, awaiting on approval for pro license
 ▪ Xcode – Up and running
AR Adjust App

• Client Contact
 ▪ Team visited office in Zeeland, Michigan and met with team / toured chair facility
 ▪ Weekly conference meetings scheduled with Herman Miller team members, planning second and final on-sites

• Team Meetings
 ▪ Tuesdays before class
 ▪ Client meetings Wednesday afternoon

• Team Organization
 ▪ Client Contact / UI Developer – Kyle Kinsey
 ▪ AR Developer – Mike Bremiller, Kevin Gaban
 ▪ UI Developer – Jacob Weber, Han Huang
Team Herman Miller

Status Report

AR Adjust App

Risks

- **Risk 1**
 - Integrating Augmented Reality into the app
 - Testing different software solutions (Vuforia, Arkit)

- **Risk 2**
 - Ability to recognize chair model via camera
 - Obtaining physical chairs and pictures to train models

- **Risk 3**
 - Learning to develop for iOS devices
 - Developing application with Unity3d in C#, making basic Swift applications

- **Risk 4**
 - Cross platform app development
 - Using Unity and Vuforia (vs. Apple Arkit), which can create both native Android and iOS apps
Team Meijer

Status Report

Personal Shopping Assistant

• Project Overview
 ▪ Simplify shopping experience (at home and in store)
 ▪ Ask app instead of a team member
 o Item locations, availability, coupons, etc.
 ▪ Create bot to answer natural language questions
 ▪ Ensure API is universal, can be consumed for other projects

• Project Plan Document
 ▪ Outline/Table of Contents finished
 ▪ Shared via OneDrive for collaboration
 ▪ 10% Complete
Team Meijer
Status Report

Personal Shopping Assistant

- Server Systems / Software
 - Microsoft Azure – have access
 - Meijer Web Services – do not have access yet, pending
 - SQL/Mongo Server(s) – not created/accessible yet

- Development Systems / Software
 - Android Studio – installed and running
 - Xcode – installed and running
 - Version Control – access pending
Team Meijer

Status Report

Personal Shopping Assistant

• Client Contact
 ▪ Had 3 Conference Calls
 ▪ Weekly 45 min. call scheduled (2:15-3 Thursdays)

• Team Meetings
 ▪ Tuesdays 2-3
 ▪ Met twice to get iMacs/VMs setup

• Team Organization
 ▪ Corporate Contact – Zach
 ▪ Android/Java – Emerson and Aaron
 ▪ iOS/Swift – Megan and Jake
 ▪ Bot Backend/C# Lead – Zach
Team Meijer

Status Report

Personal Shopping Assistant

Risks

• Bot
 ▪ Need to implement a Natural Language bot
 ▪ Zach will be dedicated lead for this section of the project but every team member will research and contribute

• Item location in each store
 ▪ We'll need to determine where the item is in the store at which the customer is shopping.
 ▪ Testing the app at several Meijer locations in the Lansing area to make sure the information is accurate.

• UI
 ▪ Meijer has not settled on an app design (pure chatbot vs menus vs ?) and will require a large variety of screen mocks to make a decision
 ▪ Will create lots of screen mockups and get feedback as often as possible

• Bluebird Integration
 ▪ A stretch goal of this project is to incorporate team member assistance via bluebird devices.
 ▪ Work with Meijer to get a device and communicate with team at Meijer who work with or develop for the devices. May be able to contact the vendor directly.
Student Engagement App

• Project Overview
 - Expand learning inside and outside of the classroom
 - Create a universal classroom response tool
 - Allow students to use mobile devices to engage
 - Streamline and simplify attendance

• Project Plan Document
 - Outline of document in place
 - Risks have been identified
 - Initial UI mockups have been created
 - Created development process
Student Engagement App

- **Server Systems / Software**
 - Set up Amazon Web Services with Flask and Python
 - Explored database and storage options (Dynamo, SQL, etc.)
 - Prototyped entity relationship diagram

- **Development Systems / Software**
 - Set up Android Development Environment and initial project
 - Set up iOS foundation and initial project
 - Started VUE project for web application
Team Michigan State University

Status Report

Student Engagement App

• Client Contact
 ▪ Met in person at MSU, set up reoccurring meetings
 ▪ Gathered initial requirements and resources

• Team Meetings
 ▪ Plan to meet Tuesdays and Fridays to work together
 ▪ Paired programming development

• Team Organization
 ▪ Set up Slack for communication
 ▪ Created Git group, and using Trello for progress tracking
Student Engagement

Risks

• iBeacon compatibility with Android
 ▪ iBeacon technology was developed by Apple for iOS
 ▪ Research existing Android libraries and create a basic app that can connect

• Create a positive experience for students AND faculty
 ▪ Students and faculty have different priorities in classroom involvement
 ▪ Conduct iterative user testing with both groups throughout development

• Align Amazon Web Services with required technology
 ▪ Technology recommended by Amazon does not fulfill requirements of the app
 ▪ Create a basic lab that utilizes all software

• Data input has to be scalable
 ▪ Interaction from students will come in large portions at a time
 ▪ Develop with scalability in mind and conduct rigorous testing with high volume.
Mozilla

• Project Overview
 ▪ Expand Firefox Theming API to allow for theming of previously unthemable browser aspects, like bookmarks and scroll bars.
 ▪ Expand theming API to allow for Google Chrome extensions to be easily transitioned over as Firefox extensions
 ▪ Create new themes for the Firefox browser
 ▪ Resolve existing bugs and issues with the theming API

• Project Plan Document
 ▪ Divided up work between team members
 ▪ Started writing schedule of project milestones
 ▪ Expect to have a first draft 1/26
 ▪ 5% done
Team Mozilla

Status Report

Mozilla

• Server Systems / Software
 ▪ All team members have the Firefox build environment downloaded and compiling on their systems.
 ▪ All team members have received level 1 access to the Firefox codebase
 ▪ All team members have created Bugzilla accounts and set up IRC chat.

• Development Systems / Software
 ▪ Both iMacs have the Firefox codebase downloaded and compiling
 ▪ Both iMacs have a Windows virtual machine running
 ▪ Both iMacs have a Ubuntu Linux virtual machine running
Team Mozilla

Status Report

Mozilla

• Client Contact
 ▪ We have emailed and met with our client
 ▪ Weekly video conference call scheduled for 3:00 P.M. on Fridays
 ▪ Hacking weekend with Mozilla on February 10 - 11

• Team Meetings
 ▪ Tues/Thurs: 4:30pm; Mon: 5:30pm
 ▪ Triage: Monday 2:20pm
 ▪ Our team has met 6 times so far

• Team Organization
 ▪ Vivek Dhingra is the client contact
 ▪ Assigned tasks to each team member through Bugzilla ticketing system
 ▪ Weekly team code review on Thursdays
Mozilla

Risks

• Large Codebase
 ▪ Firefox codebase is over 35 million lines code, finding a place to start is challenging
 ▪ Using the searchfox.com web tool to locate files of interest, rather than grep.

• Platform Testing
 ▪ Need to efficiently code for all platform without breaking compatibility. Limited team experience with testing suites
 ▪ Research and write basic tests in Mozilla’s testing suite.

• API Experience
 ▪ Unsure of the type of API (REST, SOAP, RPC). Limited team experience with API development.
 ▪ Building a basic API once Mozilla’s Theme API type is determined

• Theme Transitions
 ▪ Need to ensure compatibility when transitioning themes from Google Chrome
 ▪ Review resources to get a comprehensive understanding of Google Chrome themes. Additionally, build themes to further understanding
Team MSUFCU

Status Report

Digital Assistant and Personal Financial Coach

• Project Overview
 ▪ Digital assistant and financial coach for MSUFCU members
 ▪ Answers questions about member’s financial situation
 ▪ Gives members the ability to compare spending habits in same demographic
 ▪ Members can take action on their account to request/transfer funds

• Project Plan Document
 ▪ Created basic outline
 ▪ Completed system architecture mockup
 ▪ Started executive summary
Team MSUFCU

Status Report

Digital Assistant and Personal Financial Coach

• Server Systems / Software
 ▪ Will receive necessary hardware from MSUFCU
 ▪ Will receive access to database containing dummy accounts from MSUFCU
 ▪ This database is for testing only, and is not connected to their main database

• Development Systems / Software
 ▪ Installed necessary software on iMacs
 ▪ Will receive previous source code from MSUFCU
 ▪ Tested each program installed to verify they are working correctly
Team MSUFCU

Status Report

Digital Assistant and Personal Financial Coach

• Client Contact
 ▪ Met with client and signed an IP agreement and Non-Disclosure Agreement
 ▪ Discussed the resources that we will be using and the devices the client will be providing

• Team Meetings
 ▪ Installed Android Studio, Xcode, PHPStorm, and VMWare on iMac
 ▪ Planned weekly meetings at 5 PM on Tuesday and Thursday

• Team Organization
 ▪ Client Contact and Project Manager (Rachel)
 ▪ Machine Learning (Patrick)
 ▪ Database (Dallas)
 ▪ Web (Dane)
 ▪ Mobile Apps (Michael)
Team MSUFCU

Status Report

Digital Assistant and Personal Financial Coach

Risks

• Building off of Previous Code
 ▪ This project is building off of work done by 2 previous capstone teams
 ▪ We will work with clients to ensure our code works well with previous code; we will also contact old team members if necessary

• Working with Voice Recognition Software
 ▪ No experience with voice recognition or speech-to-text
 ▪ We will research best practices and use previous code to develop our knowledge

• Using Machine Learning to Make Predictions
 ▪ Making comparisons between members of similar demographics requires machine learning techniques
 ▪ We will research best methods for this type of data analysis and we will rely on clients to assist us.

• Integration of Android, Alexa, iOS, and Administrative Web App
 ▪ Making these systems communicate with each other may prove to be difficult
 ▪ We plan to use centralized database to maintain consistency between all different platforms
Customer Service System with Chatbot

• Project Overview
 - Customer service team references paper manuals
 - Digitize manuals using tablet camera
 - Browse and manage manuals in ebook format
 - Chatbot to answer customer questions

• Project Plan Document
 - 10% of final plan complete
 - Functional specification first draft
 - System architecture first draft
 - Identified major risks
Team Phoenix Group
Status Report

Customer Service System with Chatbot

• Server Systems / Software
 ▪ Linux installed on server
 ▪ Built toy client/server application on local machine
 ▪ Remote server access pending

• Development Systems / Software
 ▪ Installed Windows and Visual Studio 2017
 ▪ Tested C# hello world application
 ▪ Created toy chat bot with Microsoft Bot Framework
Team Phoenix Group

Status Report

Customer Service System with Chatbot

• Client Contact
 ▪ Weekly meetings on Fridays
 ▪ Upcoming functional specification draft review

• Team Meetings
 ▪ Weekly meetings on Tuesdays

• Team Organization
 ▪ Server application: Fatema, Amanuel
 ▪ Client application: Sarah, James
 ▪ Web chat bot: Dan
Team Phoenix Group
Status Report

Customer Service System with Chatbot
Risks

• Use of Docker when shipping application
 ▪ Lack of experience and compatibility issues
 ▪ Mitigation: Containerize a toy application

• Image quality when composing eBook and running OCR
 ▪ OCR system may require high image quality
 ▪ Mitigation: test OCR performance on images taken with tablet

• Dataset size and system scaling
 ▪ eBook size may be large, impacting performance
 ▪ Mitigation: OCR speed tests, client-server data transfer speed tests

• Chat bot embedding in client website
 ▪ Lack of experience
 ▪ Mitigation: Embed prototype chat bot on WordPress site
Next Generation Malware Detection

• Project Overview
 ▪ Reduce number of malware an analyst has to examine manually
 ▪ Provide malware analysis dashboard for analysts
 ▪ Produce real time signatures for malware undergoing dynamic analysis
 ▪ Schedule malware analysis efficiently

• Project Plan Document
 ▪ Estimated all but schedule and some technical specifications, under review by client
 ▪ Project Plan outline is 75% done.
 ▪ Wireframe for front end sketched
 ▪ System architecture sketched
Team ProofPoint

Status Report

Next Generation Malware Detection

• Server Systems / Software
 ▪ Web server – not set up awaiting client confirmation
 ▪ SQL Server – not set up awaiting client confirmation

• Development Systems / Software
 ▪ YARA, Cuckoo, Python – configured and tested
 ▪ Suricata, ClamAV – Not yet
 ▪ Linux, Windows, MAC OS – installed and configured
Next Generation Malware Detection

- Client Contact
 - Video conference call on Fridays starting January 12th
 - In person meeting scheduled on January 19th

- Team Meetings
 - Met 4 times so far
 - Weekly meetings – Wednesdays

- Team Organization
 - Brad is the client contact
 - Crystal is the project manager
Next Generation Malware Detection

Risks

• Clustering Malware
 ▪ What metric(s) do we use to cluster similar malware.
 ▪ Talk with analysts and/or client and research how malware can be clustered

• Scalability and Speed
 ▪ How our program can efficiently analyze malware provided
 ▪ Test speed of software and determine probability of dynamic analysis

• Processing Output of Software
 ▪ Analyzing the output of the detection software that we are using
 ▪ Prototype output parsing tools

• Constructing an API
 ▪ Give a way for the Web App to interact with the analysis tool via an API
 ▪ Research common ways to make an API and create a simple prototype API
Team Quicken Loans

Status Report

Fundamenta

• Project Overview
 ▪ Web Application for construction of a house
 ▪ Blockchain-based
 ▪ Allows interactivity between builder, buyer, and contractors
 ▪ Visual of workflow and transactions stored in the blockchain

• Project Plan Document
 ▪ Sections assigned to each team member
 ▪ Initial screen mock-ups completed and given to client
 ▪ Functional specifications have been discussed with the client
 ▪ Outlined and sections 20% complete
Team Quicken Loans

Status Report

Fundamenta

- Server Systems / Software
 - Azure
 - .NET (C#) backend
 - Private Ethereum blockchain initialized

- Development Systems / Software
 - React
 - Python (for blockchain)
 - Multiple “hello world” applications have been created
Team Quicken Loans

Status Report

Fundamenta

• Client Contact
 ▪ Scheduled weekly meetings on Wednesday afternoons
 ▪ On-site meeting scheduled January 31st

• Team Meetings
 ▪ 6 team meetings so far
 ▪ Scheduled weekly team meetings on Monday at 1 PM

• Team Organization
 ▪ Frontend / UX (Erin and Turner)
 ▪ Backend / Blockchain (Riley, Jaiwant, Vishal)
Team Quicken Loans

Status Report

Fundamenta

Risks

• Blockchain
 ▪ Applicability of proof-of-work and mining
 ▪ Create own blockchain and utilize in-house experts at Quicken Loans
• Ethereum-specific Challenges
 ▪ Usage of smart contracts for this project
 ▪ Have questions prepared for Friday call with client
• Setting Up Development Workflow
 ▪ Getting all of the technologies up and running cohesively will be a challenge
 ▪ Starting early, doing research, and asking questions
• Interaction with Database
 ▪ Setting up the blockchain to interact with SQL Server
 ▪ Small-scale testing with simple queries
Team Rook

Status Report

Endpoint Data Monitoring and Analysis Agent

• Project Overview
 ▪ Agent captures event logs on end point hosts
 ▪ Create web interface to configure agent
 ▪ Analyze health metrics based on logs
 ▪ Cross-platform compatible

• Project Plan Document
 ▪ 20% Completed
 ▪ Skeleton File Created
 ▪ Sections split up among team members
 ▪ Rough draft of system architecture created
 ▪ Initial mock user interface created
Team Rook

Status Report

Endpoint Data Monitoring and Analysis Agent

• Server Systems / Software
 ▪ Amazon S3 (access pending)
 ▪ RESTful Endpoint
 ▪ Ubuntu 16.04 Back-End API Server

• Development Systems / Software
 ▪ Go
 ▪ Django + Python
 ▪ React/Redux JS
Team Rook

Status Report

Endpoint Data Monitoring and Analysis Agent

- Client Contact
 - Weekly meeting set up for 2PM on Mondays
 - Constant Communication via Company HipChat Channel

- Team Meetings
 - Weekly Conference Call: Monday 2pm
 - Weekly Triage Meeting: Thursday 4:50pm
 - Weekly Group Meeting: Wednesday 6pm

- Team Organization
 - Client Contact: Drew Gilbertson
 - Team Structure: Web App group, Agent group, Database group
Team Rook

Status Report

Endpoint Data Monitoring and Analysis Agent

Risks

• Develop agent software that is cross-compatible
 ▪ Creating background process that captures event logs for all OS
 ▪ Understanding different OS event logs and how to capture them

• Developing health metrics to analyze captured logs
 ▪ Determining the thresholds for analyzing event logs in real time
 ▪ Research event log details and priorities, and conform to Rook standards

• Integration with existing Force Platform
 ▪ Create a web app which extends the existing platform. We need to maintain the Force Platform’s integrity.
 ▪ Develop using iterative process while working closely with Rook’s developers

• How to handle testing
 ▪ How to gain realistic data. How to evaluate security thresholds.
 ▪ Work with experts at Rook to fully understand realistic information flow
Team SpartanNash

Status Report

SpartanTrack

• Project Overview
 ▪ Track Volunteer hours
 ▪ Gamify the app, using badges/leaderboards
 ▪ Messaging from captain to the platoon
 ▪ Integrate Social media features

• Project Plan Document
 ▪ Began initial draft of the plan – 10%
 ▪ Began drafting our UML – 25%
 ▪ Began sketching out GUI – 50%
SpartanTrack

• Server Systems / Software
 ▪ MySQL is used to transfer app data from clients to server
 ▪ Using SpartanNash proprietary API’s for security

• Development Systems / Software
 ▪ React Native for dual development (Android + IOS)
 ▪ HTML/CSS/JAVASCRIPT/PHP (Web)
Team SpartanNash

Status Report

SpartanTrack

• Client Contact
 ▪ Traveled to SpartanNash HQ and met with IT leaders
 ▪ Weekly meetings - Tuesday and Friday @ 10:00 a.m.

• Team Meetings
 ▪ Team meetings – Tuesday @ 11:30 a.m., Friday @ 1:00 p.m.
 ▪ Triage meetings Friday @ 11:40 a.m.

• Team Organization
 ▪ Pair Programming
 ▪ Application Interface – Aleks + Denis
 ▪ Web Development – Tianyi + Abbott
 ▪ Data Transfer – Antonino + Abbott
Team SpartanNash

Status Report

SpartanTrack

Risks

• Scalable connection with SpartanNash DB
 ▪ May not perform well in real time
 ▪ Lots of testing, good planning

• Gold-platting
 ▪ Adding too many features may make the app difficult to use
 ▪ Constantly check with the client to make sure the features implemented are needed

• Client satisfaction with User Interface
 ▪ Interface may not be acceptable to user base
 ▪ Redesign the interface for simplicity
Team Spectrum Health

Status Report

Spectrum GO

• Project Overview
 ▪ Applications for hospital visitors to navigate
 ▪ Web interface for staff to configure paths
 ▪ Real-Time use of waypoints

• Project Plan Document
 ▪ Outlined
 ▪ Rudimentary Functional and Design Specifications Complete
 ▪ 15% complete
Spectrum GO

- **Server Systems / Software**
 - Microsoft SQL Server – TBD Friday
 - Identity Server – TBD Friday
 - GitHub/Repository – TBD Friday

- **Development Systems / Software**
 - Xcode – Up and Running
 - Android Studio – Up and Running
 - PHP Storm – Awaiting Client Approval
Team Spectrum Health

Status Report

Spectrum GO

• Client Contact
 ▪ Spoken with client once, weekly conference call time to come
 ▪ Site meeting scheduled for Friday, 01/19

• Team Meetings
 ▪ Team has met 4 times
 ▪ Weekly meetings scheduled two/three times a week, as needed

• Team Organization
 ▪ Mobile & Web Development
 ▪ Database Management
 ▪ Customer Liaison
Spectrum GO

Risks

• Spectrum Health Repository
 ▪ Obtaining sample code and repository from Spectrum on Friday
 ▪ Familiarize with the code as quickly as possible

• Route Data
 ▪ Can route data be compact enough for a reasonable phone download?
 ▪ If not, create options for downloading specific site data

• Real-time OCR
 ▪ Using Google Optical Character Recognition
 ▪ Follow tutorials and read documentation on the API

• Managing Waypoint and Routes
 ▪ How to add/delete waypoints and update routes
 ▪ Get everyone familiar with databases (SQL server)
Team Symantec

Status Report

Detecting Security Threats from User Authentication Patterns

• Project Overview
 § Build an application for analyzing VIP login data
 § Use the data to detect security threats in near real-time
 § Make dashboards to visualize the login data

• Project Plan Document
 § We started working on the outline
 § Table of contents is laid out
 § Started dividing up the work and discussing it at a meeting
 § 10% is complete
Team Symantec

Status Report

Detecting Security Threats from User Authentication Patterns

• Server Systems / Software
 ▪ Amazon Web Services: Need to get it up and running
 ▪ VIP Reporting Service Client: Waiting to get it from the client

• Development Systems / Software
 ▪ Splunk: Installed on iMacs and became familiar with it
 ▪ Elastic Search, Logstash, Kibana (ELK): Learning stack, doing basic tutorials
Detecting Security Threats from User Authentication Patterns

• Client Contact
 ▪ Had a conference call with client and met with local contact
 ▪ Weekly conference call scheduled Wednesday at 5:00 PM

• Team Meetings
 ▪ Our team has met 5 times
 ▪ Weekly team meetings Tuesday/Thursday at 4:20

• Team Organization
 ▪ Assign 2 people for Splunk and 3 people for ELK/AWS
 ▪ Re-distribute responsibilities halfway for pattern recognition and data analytics
Team Symantec

Status Report

Detecting Security Threats from User Authentication Patterns

Risks

• Ability to Detect suspicious patterns
 ▪ There is a wide range of threats to detect and want to avoid false flags
 ▪ Consult with experienced security advisor and identify possible threats

• Test Data
 ▪ Real VIP data is necessary to identify accurate threat patterns
 ▪ Get MSU’s VIP data

• Consistency between Splunk and ELK
 ▪ Making sure that functionality is consistent between both platforms
 ▪ Develop both applications concurrently

• AWS Servers
 ▪ The possibility of deploying the ELK applications on the AWS server
 ▪ Use AWS documentation and use online resources
Team TechSmith

Status Report

Snagit and Camtasia Output Extensibility

• Project Overview
 ▪ Simplify Sharing of Media Produced by TechSmith Products
 ▪ Extend Output Capabilities of Snagit and Camtasia
 o TechSmith Video Review
 o Wistia
 o Student Choice: Imgur

• Project Plan Document
 ▪ Outline complete
 ▪ Overall document is ~10% written
Team TechSmith
Status Report

Snagit and Camtasia Output Extensibility

- Development Systems / Software
 - Windows 10 virtual machine set up in Capstone lab
 - Installed and tested Visual Studio 2017 with C# .NET
 - Access to relevant TechSmith GitHub repositories established, along with communication through Flowdock and Slack
 - Currently examining documentation of various APIs needed to accomplish our output extensibility features
Team TechSmith

Status Report

Snagit and Camtasia Output Extensibility

• Client Contact
 ▪ Met with client in-person Friday 1/12 (Free Lunch!)
 ▪ Weekly Google Hangouts call on Fridays at 1 PM

• Team Meetings
 ▪ Team has met 3 times excluding All-Hands Meetings
 ▪ Weekly meetings on Mondays at noon

• Team Organization
 ▪ Quality Assurance: Logan Arent
 ▪ Client Liaison: Carter Chamberlain
 ▪ Technical Lead: Collin Dillinger
 ▪ Project Manager: Ryan Schiller
Team TechSmith

Status Report

Snagit and Camtasia Output Extensibility

Risks

• Risk 1: Reduced Team Size
 ▪ Description: Our team started with one fewer member than was originally intended
 ▪ Mitigation: More rigid team organization and adherence to deadlines

• Risk 2: API Credential Management
 ▪ Description: Our team requires APIs from three different applications
 ▪ Mitigation: Coordination with TechSmith and establishing a timeline to have all credentials in place

• Risk 3: API Uniformity
 ▪ Description: APIs used in this project may not present information uniformly
 ▪ Mitigation: Use abstraction provided by the TechSmith Extensibility Framework

• Risk 4: UI Design
 ▪ Description: GUI design is not a major skillset of our team
 ▪ Mitigation: Using WPF will reduce the difficulty of making a unified design for our plugin interfaces
Team Union Pacific

Status Report

“ALEXA – what’s my work schedule look like?”

• Project Overview
 - Trainmen, Yardmen and Enginemen (TY&E) employees operate trains for Union Pacific.
 - TY&E employees are on-call 24/7 and have constantly changing schedules.
 - Schedules are currently viewable online or in mobile app.
 - Integrate employees schedules’ into voice assistants such as Amazon Alexa, Google Home, or Siri.

• Project Plan Document
 - Skeleton created and uploaded to Google Team Drive.
 - Early database schema plans created.
 - Different use cases discussed but not added yet.
 - Next team meeting plan to divide sections to each member.
Team Union Pacific

Status Report

“ALEXA – what’s my work schedule look like?”

• Server Systems / Software
 ▪ Server assigned and early set up began, not finished.
 ▪ MySQL downloaded but not installed.
 ▪ Early database schema created.

• Development Systems / Software
 ▪ X-Code downloaded on Mac to begin iOS development.
 ▪ Alexa Skills Kit development online.
 ▪ Windows10 VM installed if needed.
“ALEXA – what’s my work schedule look like?”

- **Team Meetings**
 - January 10th 6PM-7PM
 - First meeting with teammates
 - Introduce each other and share each person’s schedule
 - Talked about project briefly
 - January 11th 2PM-3PM
 - Overview about Client meeting
 - Talked about how we can approach the project
 - January 16th 1:30PM-2PM & 4PM-5PM
 - Ready for Client meeting
 - Shared technical idea for project
 - Re-summarized Client meeting
 - Planned for each week detail schedule

- **Client Contact**
 - January 11th 1PM-2PM
 - First Client meeting with conference call
 - Overview for project tasks
 - Talked about Client request detail
 - January 16th 2PM-3PM
 - Second meeting with Client
 - Talked about the plan for project
 - Talked about risk and difficulties
 - Shared UX mock up design
 - Talked brief schedule for each week

- **Team Organization**
 - Client contact: Jared McMillan
 - Scheduling: M Kim
 - IOS & Siri & Alexa: M Kim, Daniel Agbay, Austin McGee
 - Database & Server: Jared McMillan, Daniel Agbay, David Hubble
Risks

• Risk 1 : Verification
 ▪ We will be handling sensitive information to the company and want to make sure this data is secured and not a security threat.
 ▪ We are exploring authentication channels through Google and Apple to minimize this risk.

• Risk 2 : Scalability
 ▪ Worried that a database focused information flow for the app will be difficult to scale to many users.
 ▪ Attempting to minimize database communication by storing preferences locally on app and requiring verification only once.

• Risk 3 : Schedule Format
 ▪ Union Pacific has many child companies that will use this app and each may have a different schedule format.
 ▪ Working with client to develop a standardized schedule format such as CSV or XML.

• Risk 4 : Assistant Development
 ▪ Unsure how to develop verification and settings options on voice assistants that do not have a mobile app such as Alexa and Google Home.
 ▪ Looking through Alexa documentation and working to set up very basic Alexa function – a Hello World program. Also exploring other Alexa apps to see how their verification systems work.
Team Urban Science

Status Report

Mobile Maestro

• Project Overview
 ▪ Control Maestro Exoskeletal Arm
 ▪ Use Mobile App with Voice Input
 ▪ Auto-Leveler
 ▪ Additional Safety Features

• Project Plan Document
 ▪ Outline created
 ▪ Question list for client in progress
 ▪ 20% complete
Mobile Maestro

• Server Systems / Software
 ▪ Azure server
 ▪ .NET API Endpoint
 ▪ SQL Server

• Development Systems / Software
 ▪ Cordova / Ionic setup
 ▪ SDK’s installed
 ▪ GIT Setup
 ▪ VM Setup
Team Urban Science

Status Report

Mobile Maestro

• Client Contact
 ▪ In-Person meeting
 ▪ Weekly meetings scheduled

• Team Meetings
 ▪ Multiple held so far
 ▪ Bi-Weekly meetings scheduled

• Team Organization
 ▪ Rotating project manager
 ▪ Roles assigned
Team Urban Science

Status Report

Mobile Maestro

Risks

• Bluetooth
 ▪ Setting up BLE connection to Arms
 ▪ Cordova BLE plugins

• Auto-Balancing
 ▪ Automatically balancing the Arms when on an incline
 ▪ Using phones Accelerometer / Gyroscope to level the system

• Voice activation
 ▪ Using vocal commands to control arms at all times
 ▪ Using Siri and Google Assistant

• User Experience
 ▪ UI needs to be simple and accessible
 ▪ Follow accessibility guidelines
Team USAA

Status Report

LIMElight: Life Insurance Made Easy

• Project Overview
 ▪ Generate accurate life insurance quote using machine learning
 ▪ Improve experience of receiving a insurance quote by creating a responsive mobile-friendly web application
 ▪ Utilize Ethereum blockchain to maintain and secure health records

• Project Plan Document
 ▪ System architecture diagram mockup is complete
 ▪ Screen mockups drafted
Team USAA

Status Report

LIMElight: Life Insurance Made Easy

• Server Systems / Software
 ▪ Deployed an Ethereum blockchain consortium on a Microsoft Azure server
 ▪ Deployed additional Azure server to host web application
 ▪ Hosting “Hello, world” applications for testing

• Development Systems / Software
 ▪ Installed Homebrew for package management
 ▪ Set up Windows virtual machines
 ▪ Configured Gitlab, Dropbox, Trello, and Slack services
 ▪ Installed Anaconda Python distribution
Team USAA

Status Report

LIMElight: Life Insurance Made Easy

• Client Contact
 ▪ Conference call project kickoff (introductions, project overview, expectations)
 ▪ Scheduled recurring weekly conference call Fridays at 4:00PM EST

• Team Meetings
 ▪ The team has met four times thus far
 ▪ USAA employees will be visiting from San Antonio at least once during the semester

• Team Organization
 ▪ Mike: Machine learning
 ▪ Xingchi, Dong, Nate: Web application (front and back-end)
 ▪ Abe: Project manager, utility player
LIMElight: Life Insurance Made Easy

Risks

• Blockchain Implementation
 ▪ Inexperience with the technology, difficult to see its use case
 ▪ Enrolled in Ethereum Udemy course, discussing relevance with client

• Accurate Life Insurance Quotes
 ▪ Model may struggle to produce an accurate life insurance quote with minimal applicant input
 ▪ Review academic research about most significant factors affecting an applicant's riskiness

• Poor Dataset
 ▪ Possibility of too few samples, inaccurate metrics, and irrelevant features
 ▪ Utilize third party datasets and generate our own data (e.g. location-based)

• Lack of Subject Matter Expertise
 ▪ Group does not have any experience with life insurance industry
 ▪ Connect with underwriters and actuaries at USAA
Sentiment and Emotional Analysis of Video Interviews

• Project Overview
 ▪ Build web app to facilitate recording and playback of pre-recorded and live video interviews
 ▪ Sentiment Analysis and Emotion Detection on audio/video
 ▪ Storing and querying of video interviews and sentiment/emotion results

• Project Plan Document
 ▪ Drafted cover page and table of contents
 ▪ Functional specs and mockup in progress
 ▪ Approximately 10% complete
Team Yello

Status Report

Sentiment and Emotional Analysis of Video Interviews

- **Server Systems / Software**
 - Heroku Server
 - Ruby on Rails
 - PostgreSQL

- **Development Systems / Software**
 - Scikit for sentiment analysis
 - Azure Emotion API for emotion detection
 - GitLab set-up
Team Yello

Status Report

Sentiment and Emotional Analysis of Video Interviews

• Client Contact
 ▪ Slack chat, e-mail, Google Hangouts
 ▪ Weekly conference calls on Fridays, 11:00 a.m.

• Team Meetings
 ▪ 4 meetings thus far
 ▪ Weekly meetings on Tuesdays, 2:00 p.m.

• Team Organization
 ▪ Trello for task organization
 ▪ Slack for quick communication
 ▪ GitLab for code collaboration
Team Yello

Status Report

Sentiment and Emotional Analysis of Video Interviews

Risks

• Risk 1
 ▪ Functionality and integration of APIs with Ruby on Rails
 ▪ Use our own input videos on the APIs

• Risk 2
 ▪ Managing Candidate vs. Staff privileges and views
 ▪ Design user model to identify user status

• Risk 3
 ▪ Capturing live video
 ▪ Inquire into TechSmith’s similar 2016 capstone project and contact team members for advice

• Risk 4
 ▪ Transcribing audio for sentiment analysis
 ▪ Research speech recognition methods/ APIs and use our sample input