Sample Exam for CSE 480 (2017)

Answer the questions in the spaces provided on the page. If you run out of room for an answer, continue on the back of that page.

Instructions:

• DO NOT START THE EXAM UNTIL TOLD TO DO SO

• You need to answer 6 of the 7 questions.

• On one of the questions make a large slash through it, which indicates that it should not be graded.

• On every page (including the first and last page), write your first and last name, before answering the question. Unnamed pages may be lost.

• If you start to answer a question and then change your mind, please cross out the attempt and write *DO NOT GRADE* across it.

Figure 1: http://xkcd.com/1129/
Question 1: SQL statement ... 5 points

I have 2 tables containing information about athletes and teams. The table \textit{athletes} has the following columns: name (the athlete’s name, unique), year (the graduating year of the athlete), team (the id of the team the athlete is part of), and grade (the athlete’s GPA). The table \textit{teams} has the following columns: name (the team’s name), id (the team’s identification number, unique), and school (the name of the team’s school).

I want to know (for each team) what the was the average grade of the students who played for that team. However, I am only concerned with teams with more than one player. Order the result from the highest average grade to the least.

Here is some example data:

<table>
<thead>
<tr>
<th>Table: \textit{athletes}</th>
<th>name</th>
<th>year</th>
<th>team</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Josh</td>
<td>2017</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Emily</td>
<td>2016</td>
<td>7</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Tyler</td>
<td>2015</td>
<td>8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Grant</td>
<td>2015</td>
<td>8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Charles</td>
<td>2016</td>
<td>9</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Laura</td>
<td>2016</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table: \textit{teams}</th>
<th>name</th>
<th>id</th>
<th>school</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sparties</td>
<td>7</td>
<td>MSU</td>
</tr>
<tr>
<td></td>
<td>Greens</td>
<td>8</td>
<td>MSU</td>
</tr>
<tr>
<td></td>
<td>Blues</td>
<td>9</td>
<td>UM</td>
</tr>
<tr>
<td></td>
<td>Whites</td>
<td>10</td>
<td>MSU</td>
</tr>
</tbody>
</table>

And the desired results for this example data:

<table>
<thead>
<tr>
<th>team</th>
<th>average grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparties</td>
<td>3.5</td>
</tr>
<tr>
<td>Greens</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Fill in the blanks when the clause should be used in the SELECT statement (you must always use qualified names):

\textbf{SELECT} ...

\textbf{FROM} ...

\textbf{JOIN} ...

\textbf{ON} ...

\textbf{WHERE} ...

\textbf{GROUP BY} ...

\textbf{HAVING} ...

\textbf{ORDER BY} ...

Points earned: __________ out of a possible 5 points
Question 2: Corrupted Database ... 5 points

Unfortunately, Pikachu got a bit upset too close to our database, and it erased some of the values. The data isn’t essential, but we would like to recover what we can. Here’s what we know:

- The relation has 6 attributes (A-F) as shown below.
- The relation has one multivalued dependency: \(AB \rightarrow F \)
- The relation has two functional dependencies: \(C \rightarrow D \)
- and \(AC \rightarrow E \)

Use the data given in the relation below to fill in the missing values. If the value is unknown, put a question mark (?) instead of a number.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th></th>
<th>C</th>
<th>D</th>
<th></th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Points earned: __________ out of a possible 5 points
Question 3: Schedules .. 5 points

(a) (1 point) What is the difference between a serial and a serializable schedule?

..
..
..
..
..

(b) (1 point) Which of the four ACID principles are violated by a non-serializable schedule?
 ○ Atomicity ○ Consistency ○ Isolation ○ Durability

(c) (1 point) When does a conflict occur between two transactions?

..
..
..
..
..

(d) (1 point) Define what conflict-serializable means.

..
..
..
..
..

(e) (1 point) Are all serializable schedules conflict-serializable?

..
..
..
..
..

Points earned: __________ out of a possible 5 points
Question 4: Precedence .. 5 points

(a) (1 point) What are the 3 conditions that determine if an action \(A_1 \) from one
transaction takes precedence over an action \(A_2 \) in a different transaction?

(b) (2 points) What are the conflicts and implied transaction precedence for the fol-
lowing schedule:

\[
S: r_1(A); r_2(B); w_1(A); w_2(A); w_3(A); w_3(B); r_1(B);
\]

(c) (2 points) Draw the Precedence Graph for the schedule and indicate if it is conflict-
serializable.

Points earned: __________ out of a possible 5 points
Question 5: Simple Locks ... 5 points

(a) (1 point) According to two-phase locking, when can locks not be acquired?
 ○ Before all read and write actions
 ○ Before the last read or write action
 ○ After the first unlock action
 ○ Only upon commit or rollback

(b) (1 point) According to strict two-phase locking, when can unlocks be performed?
 ○ Before all read and write actions
 ○ Before the last read or write action
 ○ After the first unlock action
 ○ Only upon commit or rollback

(c) (3 points) For this question there is only one type of lock (an exclusive lock).
 For the following schedule (S), output all of the read and write actions with the
 needed lock and unlock actions (i.e. $l_1(A)$ and $u_1(A)$). Only lock/unlock when
 such actions are required. You can assume a commit occurs when a transaction has
 completed all of its actions.
 S: $r_1(A); w_1(B); w_2(C); r_1(A); w_2(A); r_3(B);$
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

Points earned: ___________ out of a possible 5 points
Question 6: Multiple Types of Locks.. 5 points

Below are three transactions (and six total actions). Unlocks must happen after all the actions in a transaction have taken place (strict two-phase locking). For this problem, there are shared locks ($sl_1(A)$) and exclusive locks ($xl_1(A)$) and either/both are unlocked with ($u_1(A)$). Below, the order of each of the actions are interleaved. For each part, output the necessary locks and unlocks that the transaction should perform to make the action take place (don’t forget to include the action itself).

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1(X)$</td>
<td></td>
<td>$w_2(Y)$</td>
<td>$w_3(Z)$</td>
</tr>
<tr>
<td>$w_1(Y)$</td>
<td></td>
<td></td>
<td>$w_3(Y)$</td>
</tr>
<tr>
<td>$w_1(X)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) T_1: $r_1(X)$

..

(b) T_2: $w_2(Y)$

..

(c) T_1: $w_1(Y)$

..

(d) T_3: $w_3(Z)$

..

(e) T_1: $w_1(X)$

..

(f) T_3: $w_3(Y)$

..

Points earned: __________ out of a possible 5 points
Question 7: Transaction Modes ... 5 points

After the statement is completed by the associated connection, write which connections are holding each type of lock in the table. If no connection holds a type of lock, leave it blank. A connection can only hold one lock at a time. If an action can’t be granted the necessary locks, cross out that action and proceed as if that action wasn’t in the schedule (don’t perform a rollback).

<table>
<thead>
<tr>
<th>ID</th>
<th>SQL statement</th>
<th>Shared</th>
<th>Reserved</th>
<th>Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CREATE TABLE ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BEGIN TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INSERT INTO ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SELECT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BEGIN IMMEDIATE TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DELETE FROM ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ROLLBACK TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BEGIN TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BEGIN TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>COMMIT TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SELECT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SELECT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INSERT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INSERT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COMMIT TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COMMIT TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BEGIN EXCLUSIVE TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SELECT ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>UPDATE ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>COMMIT TRANSACTION;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Points earned: __________ out of a possible 5 points
Question 8: Deadlocks ... 3 points

Our database is running into problems, as many transactions are waiting for locks held by other transactions. Here is what each transaction is waiting for:

- T_1 is waiting on T_4
- T_2 is waiting on T_7
- T_3 is waiting on T_2
- T_4 is waiting on T_1
- T_5 is waiting on T_8
- T_6 is waiting on T_2
- T_7 is waiting on T_6
- T_8 is not waiting

(a) (1 point) Draw the Wait-For graph for transactions T_1–T_8.

(b) (1 point) Which transactions are deadlocked?

- T_1
- T_2
- T_3
- T_4
- T_5
- T_6
- T_7
- T_8

(c) (1 point) What needs to be done to resolve the deadlock?

...
...
...
...

Points earned: __________ out of a possible 3 points
Question 9: Deadlock Resolution ... 5 points

Below is a time line as to when transactions were started, received locks, and requested a lock. For this problem you can assume all locks are exclusive. You can also assume transaction restarts are handled after the events described.

1. \(T_W \) starts
2. \(T_W \) gets lock on A
3. \(T_X \) starts
4. \(T_X \) gets lock on B
5. \(T_W \) wants lock on B, waits on \(T_X \)
6. \(T_Z \) starts
7. \(T_Z \) gets lock on C
8. \(T_Z \) wants lock on B, rollback!

(a) (1 point) Which deadlock resolution strategy is being used?

○ Wait-Die ○ Wound-Wait

(b) (2 points) If the same events occurred using the other deadlock resolution strategy, what would the time line be?

..
..
..
..
..

(c) (1 point) Before the rollback on the original Step 8, draw the Wait-For Graph for the transactions.

..
..
..
..
..

(d) (1 point) If you want to have fewer rollbacks (but perhaps undoing more work) which strategy should you use?

○ Wait-Die ○ Wound-Wait

Points earned: ___________ out of a possible 5 points
Question 10: Optimistic Scheduling .. 5 points
There are two transactions (T_i and T_j). T_i started before T_j. Both T_i and T_j performing reads and/or writes on database element E.

(a) (1 point) Give an example of a *Read-too-late* event and why it is a problem.

(b) (1 point) Give an example of a *Write-too-late* event.

(c) (1 point) Why are *physically unrealizable* behaviors a problem?

(d) (1 point) What is the *Thomas Write Rule*?

(e) (1 point) When does an optimistic scheduler (time stamp/validating) outperform a pessimistic scheduler (locking)?
Question 11: Legal Optimistic Schedules ... 5 points

Below is a time line of when two transactions \(T_i \) and \(T_j \) performed actions on the database.

1. \(T_i \) begins transaction
2. \(r_i(A) \)
3. \(T_j \) begins transaction
4. \(w_i(B) \)
5. \(w_j(A) \)
6. \(T_i \) commits transaction
7. \(T_j \) commits transaction

For proposed action, indicate if that action were added (in isolation from the other proposed actions) would the resulting schedule result in physically unrealizable behavior.

(a) \(w_i(A) \) between steps 3 and 4 ○ Legal ○ Physically Unrealizable
(b) \(w_j(B) \) between steps 3 and 4 ○ Legal ○ Physically Unrealizable
(c) \(w_j(B) \) between steps 4 and 5 ○ Legal ○ Physically Unrealizable
(d) \(r_j(B) \) between steps 4 and 5 ○ Legal ○ Physically Unrealizable
(e) \(w_j(C) \) between steps 4 and 5 ○ Legal ○ Physically Unrealizable
(f) \(r_i(A) \) between steps 5 and 6 ○ Legal ○ Physically Unrealizable
(g) \(w_i(A) \) between steps 5 and 6 ○ Legal ○ Physically Unrealizable
(h) \(r_j(A) \) between steps 6 and 7 ○ Legal ○ Physically Unrealizable

Points earned: __________ out of a possible 5 points
Question 12: Entity/Relationship Diagram................................. 5 points
We are creating a database to record which farms raise which types of animals. Below are some facts that need to be represented in the database:

- Each farm has a name and a unique address
- Each farm may raise multiple animals, and each animal can be uniquely identified by the combination of its species and id number.
- Each animal is raised by one farm.
- Each animal also has a nickname, but this may not be unique to each.
- Some animals are breeders, meaning that we know its sex and the season in which it can be breed.
- Some animals are producers, meaning that they produce one or more products (e.g. eggs, milk, wool).
- The products that can be produced have a unique id, as well as, a name and price.

Draw an E/R diagram illustrating the structure of a database capturing the above information.
Question 13: Converting E/R Diagram .. 5 points

Below is an E/R representing information about pets and their owners.

(a) (4 points) Write a relational database schema representing the E/R diagram. Be sure to combine relations when possible. Use the Object-Oriented method to create relations for the subclasses.

(b) (1 point) Into what relation(s) would you put a pet that is purebred and trained?

Points earned: ___________ out of a possible 5 points
Question 14: Dependencies .. 5 points

Below is a relation about pets and owners.

<table>
<thead>
<tr>
<th>Pet</th>
<th>Species</th>
<th>Age</th>
<th>Owner</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoe</td>
<td>Dog</td>
<td>8</td>
<td>Josh</td>
<td>123-4567</td>
</tr>
<tr>
<td>River</td>
<td>Cat</td>
<td>11</td>
<td>Josh</td>
<td>123-4567</td>
</tr>
<tr>
<td>Harry</td>
<td>Rat</td>
<td>4</td>
<td>Emily</td>
<td>246-1357</td>
</tr>
<tr>
<td>Ron</td>
<td>Rat</td>
<td>4</td>
<td>Emily</td>
<td>246-1357</td>
</tr>
<tr>
<td>Snape</td>
<td>Rat</td>
<td>3</td>
<td>Emily</td>
<td>246-1357</td>
</tr>
</tbody>
</table>

(a) (3 points) Which functional dependencies are obeyed?
- o Pet → Species
- o Species → Owner Phone
- o Phone → Owner Phone
- o Species → Pet
- o Pet → Phone
- o Age → Owner

(b) (2 points) The above relation obeys this multivalued dependency (Owner →→ Phone).
What other rows must also be added if the row below is added? Fill in the additional dependent rows as needed (you may not need them all).

<table>
<thead>
<tr>
<th>Pet</th>
<th>Species</th>
<th>Age</th>
<th>Owner</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mal</td>
<td>Bird</td>
<td>12</td>
<td>Josh</td>
<td>555-5555</td>
</tr>
</tbody>
</table>

Points earned: __________ out of a possible 5 points
First Name: _______________________

Last Name: _______________________

Question 15: Closures .. 5 points

Here’s a relation (R), its attributes and its functional dependencies (F):

R(A, B, C, D, E)

C D \rightarrow B
A \rightarrow D
E \rightarrow C

(a) (1 point) Which of the following are in the attribute set closure \{AB\}+?

- \{A\}
- \{AB\}
- \{D\}
- \{BC\}
- \{CD\}
- \{ABD\}

(b) (1 point) Which of the following are in the functional dependency closure of F (F+)?

- C D \rightarrow B
- A \rightarrow A
- D \rightarrow B
- E \rightarrow C D
- A C \rightarrow B
- A E \rightarrow B

(c) (2 points) Which of the following are superkeys?

- \{ABCDE\}
- \{A\}
- \{BCE\}
- \{AE\}
- \{AB\}
- \{ABE\}

(d) (1 point) Which of the following are keys?

- \{ABCDE\}
- \{A\}
- \{BCE\}
- \{AE\}
- \{AB\}
- \{ABE\}

Points earned: __________ out of a possible 5 points
Question 16: Lossless Joins .. 5 points

Here’s a relation (R), its attributes and its functional dependencies (F):

\[R(A, B, C, D, E) \]

\[\text{C D} \rightarrow \text{B} \]

\[\text{A} \rightarrow \text{D} \]

\[\text{E} \rightarrow \text{C} \]

(a) (1 point) Which of the following sets of relations maintain the lossless join property?

- \(R_1(ABCDE), R_2(ABCD) \)
- \(R_1(AD), R_2(ABCE) \)
- \(R_1(AB), R_2(BCDE) \)
- \(R_1(CD), R_2(ABCE) \)

(b) (2 points) Which of the following sets of relations are entirely in Boyce-Codd Normal Form?

- \(R_1(ABCDE) \)
- \(R_1(AD), R_2(ABCE) \)
- \(R_1(CDB), R_2(ACDE) \)
- \(R_1(CDB), R_2(AD), R_3(CE), R_2(AE) \)

(c) (2 points) Which of the following sets of relations are dependency preserving?

- \(R_1(ABCDE) \)
- \(R_1(AD), R_2(ABCE) \)
- \(R_1(CDB), R_2(ACDE) \)
- \(R_1(CDB), R_2(AD), R_3(CE), R_2(AE) \)

Points earned: __________ out of a possible 5 points
Question 17: Decomposition ... 5 points
Here’s a relation (R), its attributes and its functional dependencies (F):
R(A, B, C, D, E)
C D → B
A → D
E → C
(a) (3 points) Decompose the above relation using the Boyce-Codd Normal Form decomposition. Use the order of F when checking for violations.

(b) (2 points) What is the key for the relation R?
If you have finished early, feel free to bring your exam to an instructor.
Or you can draw a picture of your favorite Pokémon.
Or you can write a limerick about your love of Boyce-Codd Normal Form.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL statement</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Corrupted Database</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Schedules</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Precedence</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Simple Locks</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Multiple Types of Locks</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Transaction Modes</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Deadlocks</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Deadlock Resolution</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Optimistic Scheduling</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Legal Optimistic Schedules</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Entity/Relationship Diagram</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Converting E/R Diagram</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dependencies</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Closures</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lossless Joins</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Decomposition</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>