Unified Modeling Language
(A Brief Overview)

Types of Diagrams

Objectives: visualize, specify, construct, and document a system

- Structural: focus on static aspects of system
- Behavioral: focus on dynamic aspects of system (changing parts)
Structural Diagrams

- **Class**: set of classes and their relationships
 - Interface: a collection of operations that specify a service of a class

- **Object**: set of objects and their relationships

- **Component**: set of components and their relationships
 - Component: physical realization of a logical grouping of elements (e.g., classes, interfaces)

- **Deployment**: set of nodes and their relationships
 - Exists at runtime; represents computational resource
 - Node typically encloses one or more components

Behavioral Diagrams

- **Use case**: organize behaviors of system
 - User goals (high-level services of system)
 - Perspective from external entities (actors)

- **Interaction Diagrams**
 - **Sequence**: focus on time ordering of messages
 - **Collaboration**: focus on structural organization of objects that send/receive messages

- **Statechart**: changing state of system driven by events

- **Activity**: focus on flow of control from one activity to another
Development Process

- High-Level capture of requirements
 - Use Case Diagram

- Identify major objects and relationships
 - Class diagram (object diagram)

- Create scenarios of usage
 - Interaction Diagrams
 - Sequence Diagram
 - Collaboration Diagram

- Generalize scenarios to describe behavior
 - State Diagram
 - Activity Diagram

- Refine to add implementation details
 - Implementation Diagrams
 - Component Diagram
 - Deployment Diagram