Verification

(See related materials in textbook.)
Outline

• What are the goals of verification?
• What are the main approaches to verification?
 – What kind of assurance do we get through testing?
 – How can testing be done systematically?
 – How can we remove defects (debugging)?
• What are the main approaches to software analysis?
 – informal vs. formal
Need for verification

• Designers are fallible even if they are skilled and follow sound principles

• Everything must be verified, every required quality, process and products
 – even verification itself…

• Correctness: must have point of reference
 – Design is correct wrt requirements
 – Code is correct wrt design, requirements
 – Code correctness: does a program work as expected for a given set of inputs
Properties of verification

• May not be binary (e.g., right, wrong)
 – severity of defect is important
 – some defects may be tolerated

• May be subjective or objective
 – e.g., usability

• Even implicit qualities should be verified
 – because requirements are often incomplete
 – e.g., robustness
Approaches to verification

• Experiment with behavior of product
 – sample behaviors via testing
 – goal is to find "counterexamples"
 – dynamic technique

• Analyze product to deduce its adequacy
 – analytic study of properties
 – static technique
Testing and lack of "continuity"

- Testing samples behaviors by examining "test cases"
- Impossible to extrapolate behavior of software from a finite set of test cases
- No continuity of behavior
 - it can exhibit correct behavior in infinitely many cases, but may still be incorrect in some cases
Verification in engineering

- Example of bridge design
- One test assures infinite correct situations
procedure binary-search (key: in element;
 table: in elementTable; found: out Boolean) is
begin
 bottom := table'first; top := table'last;
 while bottom < top loop
 if (bottom + top) rem 2 ≠ 0 then
 middle := (bottom + top - 1) / 2;
 else
 middle := (bottom + top) / 2;
 end if;
 if key ≤ table (middle) then
 top := middle;
 else
 bottom := middle + 1;
 end if;
 end loop;
 found := key = table (top);
end binary-search
Goals of testing

• Show the presence of bugs (Dijkstra, 1987)
• If a test does not detect a failure,
 – then CANNOT conclude that software is defect-free
• Still, we need to do testing
 – driven by sound and systematic principles
Goals of testing (cont.)

• Should help isolate errors
 – to facilitate debugging

• Should be repeatable
 – repeating the same experiment, we should get the same results
 • this may not be true because of the effect of execution environment on testing
 • because of *nondeterminism*

• Should be accurate
Theoretical foundations of testing
Definitions (1)

• We view a program to test as a function
 – when invoked with some input $d \in D$
 – produces some output $r \in R$
 – $P: D \rightarrow R$ (may be partial)
 – P (program), D (input domain), R (output domain, i.e., range)

• Correctness defined by an output relation, O_R
 – $O_R \subseteq D \times R$
 – $P(d)$ correct if $<d, P(d)> \in O_R$
 – P is correct if all $P(d)$ are correct

• Note: Ghezzi uses OR representation for Output Relation (We use to O_R avoid confusion with logical operator.)
Definitions (2)

• **FAILURE**
 – $P(d)$ is not correct
 • may be undefined (error state) or may be the wrong result

• **ERROR (DEFECT)**
 – anything that may cause a failure
 • typing mistake
 • programmer forgot to test “x = 0”

• **FAULT**
 – incorrect intermediate state entered by program
Definitions (3)

- Test case \(t \)
 - an element of \(D \)
- Test set \(T \)
 - a finite subset of \(D \)
- Test is "successful" (passed) if \(P(t) \) is correct
- Test set "successful" (passed) if \(P \) is correct for all \(t \) in \(T \)

"passed" term used by B. Cheng
Definitions (4)

- **Ideal test set** T
 - if P is incorrect, then there is an element of T such that $P(d)$ is incorrect

- *if an ideal test set exists for any program, we could prove program correctness by testing*
Test criterion

- A **test selection criterion C** specifies conditions that must be specified by a test set.
 - C defines finite subsets of domain D (test sets)
 - $C \subseteq 2^D_F$, where 2^D_F denotes all finite subsets of D

- A test set T satisfies C if it is an element of C

Example

$C = \{<x_1, x_2, \ldots, x_n> | n \geq 3 \land \exists i, j, k, (x_i < 0 \land x_j = 0 \land x_k > 0)\}$

- $<-5, 0, 22>$ is a test set that satisfies C
- $<-10, 2, 8, 33, 0, -19>$ also does
- $<1, 3, 99>$ does not
Properties of criteria (1)

• **C is consistent**
 – for any pairs T_1, T_2 satisfying C, T_1 is successful iff T_2 is successful
 • so either of them provides the “same” information

• **C is complete**
 – if P is incorrect, then there is a test set T of C that is not successful

• **C is complete and consistent**
 – identifies an ideal test set
 – enables correctness to be proved!
Properties of criteria (2)

• **C1 is finer-grained than C2**
 – for any program P
 • for any T1 satisfying C1 there is a subset T2 of T1 which satisfies C2
Properties of definitions

• None is effective, i.e., no algorithms exist to state if a program, test set, or criterion has that property

• In particular, there is no algorithm to derive a test set that would prove program correctness
 – there is no constructive criterion that is consistent and complete
Empirical testing principles

• Attempted compromise between the impossible and the inadequate

• Find strategy to select significant test cases
 – significant=has high potential of uncovering presence of error
Complete-Coverage Principle

- Try to group elements of D into subdomains D_1, D_2, \ldots, D_n where any element of each D_i is likely to have similar behavior
 - $D = D_1 \cup D_2 \cup \ldots \cup D_n$

- Select one test as a representative of the subdomain

- If $D_j \cap D_k = \emptyset$ for all j, k (partition), any element can be chosen from each subdomain

- Otherwise choose representatives to minimize number of tests, yet fulfilling the principle
Complete-Coverage Principle

example of a partition
Testing in the small

• We test individual modules

• **BLACK BOX** (functional) testing
 – partitioning criteria based on the module’s specification
 – tests *what the program is supposed to do*

• **WHITE BOX** (structural) testing
 – partitioning criteria based on module’s internal code
 – tests *what the program does*