CSE 435
Dec 2, 2015
Security Intro
Next Monday, Dec 7

- prototype version 2 due
- demo and presentation
 - plan on 15-20 minutes
 - describe your system
 - discuss how you will respond to changes
- final SRS document
- “sealed bid”
 - delivery schedule
 - price
Patches

• Fixes for flaws that require an expert to install are not a good fix.
• Fixes that break something else are not a good fix.
• Frequent fixes may be ignored.
• Goal should be design, not patch
Source of Problems

About 30% are buffer overflows or unchecked data
Over 90% are coding/design flaws.

Source:
Securityfocus.com

[Spafford]
Broad Categories of Threats

- Interruption
- Interception
- Modification
- Fabrication
Security Goals

- **Confidentiality:**
 - Assets are accessible only by authorized parties
 - Read-type access: read, view, print, existence
 - secrecy and privacy

- **Integrity:**
 - Modified only by authorized parties in authorized ways
 - Modification: write, change, change status, delete, create

- **Availability:**
 - Assets accessible to authorized parties
 - denial of service
Vulnerabilities

- Reverse the 3 security objectives
- Major assets:
 - Hardware
 - Software
 - Data
- Their interconnection is also an asset
Threats to Hardware

• Physical device is visible – easy target

• “Involuntary computer-slaughter”
 – Accidental acts not intended to do harm
 – Ex: natural acts, human-oriented accidents (spilling of food/drink), dust, smoke, physical abuse

• “Voluntary computer slaughter” – machinicide:
 – Shoot or stab machines, bombs/fires/collisions, short out circuit boards (pens, knives, etc.), stolen
 – Theft and destruction major mechanisms for attack
Threats to Software

• Computing Equipment worthless without software
• **Deletion**: easy to delete
 – Motivate need for configuration management
• **Modification**:
 – **Trojan horse**: overtly does one task, covertly does something else
 – **Virus**: type of Trojan horse; spread infection from one computer to another
 – **Trapdoor**: program has secret entry point
 – **Information leaks**: makes information accessible to unintended people/programs
• **Theft**: unauthorized copying of SW
The internet worm of 1988

Internet worm of 1988

- exploited vulnerabilities in unix, finger, sendmail
- copied /etc/passwd file, then guessed passwords
- used any credentials found to infect other systems
Internet worm of 1988

Goal was to set up a botnet, but several mistakes prevented it from happening
Other notorious worms

- Melissa
- ILOVEYOU
- SirCam

trick users into clicking executable email attachment (requires human assistance)
An actual botnet

Conficker worm:

- first appeared 2008
- infects a computer, opens a channel to worm’s creator, then awaits instructions
Threats to Data

• Printed data can be readily interpreted by general public
• Data attack more widespread than either HW or SW
• Data has cost:
 – Confidential data has value to competitors
 – Incorrectly modified data lead to loss of human life
 – Poor security can lead to financial liability
 • Personal data is leaked to public
• Data may have short life:
 – High value: (e.g., economic data and effect on stock market)
Threats to Data

• **Confidentiality:**
 – Preventing unauthorized disclosure
 – **Problems:** wiretapping, bugs in output devices, monitoring electromagnetic radiation, bribing key employees. (Data is often human readable.)

• **Integrity:**
 – Preventing unauthorized modification
 – **Problems:** malicious programs, erroneous file system utilities or flawed communication systems

• **Availability:**
 – Preventing denial of authorized access
 – **Problems:** denial of service attacks. (flood server)
Other threatened entities

- **Storage media**
 - Need backups of data and physical protection of backups

- **Networks:**
 - Involve HW, SW, and data

- **Access:** access to computing equipment (unauthorized use of processing cycles, network, etc.)

- **Key People**
 - Crucial weak points
What big recent retail data breach has made news?
People Involved

- **Amateurs:**
 - Observed flaw in security
 - Normal/regular employees
 - Exploit system (innocently?)

- **Crackers:**
 - Students who attempt to access facilities
 - “victimless” crime?
 - Serious offense: causes millions of dollars in damage

- **Career Criminals:**
 - Start as computer professionals who engage in computer crime and have good payoffs
 - Electronic spies
 - Response: lack of criminal prosecution trend
Methods of Defense

• Controls:
 – Encryption: transform data to unintelligible format to outside observers.
 – SW controls:
 • Internal program controls: parts of program enforce security restrictions (e.g., access limits)
 • Operating system controls: limitations enforced by OS to protect users from each other
 • Development controls: quality standards for design, code, test, and maintenance.
 – May use HW components, encryption, or info collection.
 • Affect users directly, so is usually first solution considered
 • Care must be taken in design because it affects the way systems are used
 • Balance between ease of use and effectiveness.
Methods of Defense (cont’d)

- Hardware Controls:
 - HW or smartcard implementations of encryption
 - Locks limiting access
 - Circuit boards that control access to disks in PCs

- Policies:
 - Added HW or SW features
 - Frequent changes of passwords
 - Must have training and administration
 - Legal and ethical controls (lack of understanding and standards for both)

- Physical Controls:
 - Locks on doors, guards at entry points,
 - backup copies of important artifacts,
 - physical site planning to avoid natural disasters
Effectiveness of Controls

• Awareness of problem
 – People using controls must understand the need

• Likelihood of Use:
 – Principle of Effectiveness: Controls must be used to be effective. They must be efficient, easy to use, and appropriate.

• Overlapping Controls:
 – Security for a PC may involve security for access to data, physical access to machine/storage media, and file locking mechanisms.

• Periodic Review:
 – Few controls are permanently useful.
 – Need to review and update.
Cost Benefit Analysis

• Cost of Loss
 – Assigning cost range is sufficient

• Cost of Prevention
 – Cost of preventing each loss

• Adding up the Numbers
 – Matrix w/ assets, risks, possible losses
 – Includes: probability, the predicted loss, $ required to defend against the loss

• Convincing Management
 – Risk assessment helps you make proper justifications for management
What does all this mean for a software engineer?

- evaluate risks and costs
- create and follow a security **policy**
- from a practical standpoint,
 - don’t take defaults
 - don’t take shortcuts
Creating Policy

• Defines what you consider to be valuable and what steps should be taken to safeguard those assets.

• General Policy

• Policy for Different Sets of Assets
 – Email, personnel data, etc.
The Role of Policy

• Makes clear **what** is being protected and **why**
• States the **responsibility** for that protection
• Provides grounds upon which to interpret and resolve any later conflicts that might arise
• Should be **general** and **change little** over time
• Should **not** list specific threats, machines or individuals by name

[Garfinkel & Spafford]
Standards

• Standards codify successful practice of security in an organization.
• Generally phrased in terms of “shall”
• Platform independent
• Imply a metric to determine if they have been met
• Developed to support policy
• Change slowly over time

[Garfinkel & Spafford]
Four Easy Steps to a More Secure Computer

1. Decide how important security is to your site
2. Involve and educate your user community
3. Devise a plan for making and storing backups of your system data
4. Stay inquisitive and suspicious

[Garfinkel & Spafford]