Lab Exercise #3 -- Sequential Circuits

In a combinational circuit, the outputs of the circuit are determined by the current inputs; in a sequential circuit, the current inputs and the current state of the circuit determine the next state (and the outputs).

The fundamental building block for sequential circuits is the D flip-flop. Commonly used components include parallel load registers, serial load registers, counters, and sequencers.

A. D Flip-Flops

1. The file "\~cse320/Labs/lab03.dff.c" contains a C++ module which is a test bed for experimenting with the D flip-flop ("Dff") component. Bring the function into simulation using the UNIX command:

 <prompt> sim \~cse320/Labs/lab03.dff.c

Experiment with the circuit and answer the following questions.

a) Give the initial value of all inputs to the D flip-flop.

 Set: ___0__ Data: ___0__ Clock: ___0__ Reset: ___0__

b) What is the initial value of the output from the Dff? Explain.

 The output is X (in transition). The DFF has not yet been initialized, so it is in an undefined state.

c) Toggle (assert, then de-assert) the Data signal three times. What happens to the output from the Dff? Explain.

 Nothing happens to the output (the value of the data input will be copied into the DFF on the rising edge of the clock pulse, but no clock pulse has yet occurred).

d) Assert the Data signal, then toggle the Clock signal. What happens to the output from the Dff? Explain.

 The output becomes 1 (the value of the data input) on the rising edge of the clock pulse.

e) With the Data signal asserted, toggle the Clock signal three times. What happens to the output of the Dff? Explain.

 The output doesn’t change. The value of the data signal is copied into the DFF on rising edge of each of the three clock pulses, but the data signal remains the same and thus there is no change in the output.

f) Assert the Clock signal, then toggle the Data signal three times. What happens to the output from the Dff? Explain.

 Nothing happens to the output. The value of the data signal is copied into the DFF on the rising edge of the clock pulse, which only happened once in this particular case.

g) Assert the Set signal, de-assert the Data signal, then toggle the Clock signal several times. What happens to the output from the Dff? Explain.
h) De-assert the Set signal, assert the Reset signal and the Data signal, then toggle the Clock signal several times. What happens to the output from the DFF? Explain.

The output becomes 0. The Reset signal is used to asynchronously store the value 0 in the DFF. Since the Reset signal is continuously asserted in this particular case, the value 0 is continuously being stored in the DFF.

2. Which of the inputs to a D flip-flop are asynchronous signals? Explain.

The Set and Reset signals are asynchronous (they are independent of the clock pulse).

B. Parallel Load Registers

A parallel load register is composed of flip-flops; it captures the data inputs when the enable signal is asserted and the next clock pulse occurs.

The file "cse320/Labs/lab03.register.c" contains a C++ module which is a test bed for experimenting with the "Register" component.

1. Bring the function into simulation, then experiment with the circuit and answer the following questions.

a) Press the 'F1' key to guarantee that the simulation starts fresh. What do the probes show as the initial contents of the register? Explain.

The probes show / (uninitialized). No value has been placed in the register yet.

b) Assert one of the data input signals. What happens to the value displayed by the probes on the output of the register? Explain.

Nothing happens to the output signals since the registered has not yet been enabled.

c) Set the data inputs to 1010, then cycle the clock pulse by touching the 'c' key. What happens to the value displayed by the probes on the output of the register? Explain.

Nothing happens to the output signals since the registered has not yet been enabled.

d) Leave the data inputs as 1010, assert the enable signal, and then cycle the clock pulse by touching the 'c' key. What happens to the value displayed by the probes on the output of the register? Explain.

The output becomes 1010 (the input signals are copied into the register, and after a brief propagation delay, become the output signals).

e) De-assert the enable signal, set the data inputs to 1111, and then cycle the clock pulse by touching the 'c' key. What happens to the value displayed by the probes on the output of the register? Explain.

Nothing happens to the output signals since the register is not enabled.
f) Assert the enable signal, then cycle the clock pulse. What happens to the register output? Explain.

The output becomes 1111 (the input signals are copied into the register, and after a brief propagation delay, become the output signals).

2. Summarize the purpose of each of the input signals: enable signal, clock signal, and data signals.

Enable signal: when the enable signal asserted, the register is active (and the other signals take affect).

Clock signal: when the enable signal is asserted, the rising edge of the clock pulse causes the input signals to be loaded into the register (and become the output signals).

Data signals: the value to be stored in the register.

C. Counters

A counter uses flip-flops to retain the current state (value in the count sequence); it moves to the next state (next value in the count sequence) when the counter is strobed. It always outputs the current state.

The file "cse320/Labs/lab03.counter.c" contains a C++ module which is a test bed for experimenting with the "Counter" component.

1. Bring the function into simulation, then experiment with the circuit and answer the following questions.

a) Press the 'F1' key to guarantee that the simulation starts fresh. What do the probes show as the initial outputs of the counter? Explain.

The probes show / (uninitialized). The counter has not been initialized.

b) Touch the 'r' key to reset the counter. What values do the probes display? Explain.

The probes show 0000 (the initial value for the counter).

c) Touch the 's' key three times to make the counter move through the sequence {0, 1, 2, 3}. What values do the probes display? Explain.

The probes show 0011 (the value three).

d) Touch the 'r' key to reset the counter. What values do the probes display? Explain.

The probes show 000 (the initial value for the counter), since it has been reset back into the initial state.

e) What is the largest value in the count sequence? What happens when you reach the largest value, then touch the 's' key again? Explain.

The probes show 1111 (the value 15) for the largest value before touching the 's' key. Afterwards, the probes show 0000 (because the counter only has four bits of output, and overflow on an unsigned value wraps back to zero).
f) The reset signal for the Counter component is "active low". Explain.

When the reset signal is 1, that signal is not active. When the reset signal is 0, it is active (resets the counter to hold the value zero).

2. The Counter used in the test bed is a 4-bit binary counter: it outputs the sequence <0000, 0001, 0010, 0011, 0100, ..., 1111, 0000, ...>.

Recall that the Gray code sequence is <000, 001, 011, 010, 110, 111, 101, 100, 000, ...> for 3 bits.

Describe (in general terms) what would have to be done to convert a 3-bit binary counter into a 3-bit Gray code counter.

The combinational logic used to implement the mapping from the current state to the next state would be different. In fact, it would be much simpler logic, since only one bit changes as you move from one value to the next in the Gray code sequence.

D. Sequencers

It is often necessary to ensure that certain steps occur in a particular order (sequence). If there are N steps in the sequence, N flip-flops (synchronized by a common clock signal) can be used to trigger the steps in order. Only one of the flip-flops stores a '1' at any given moment in time, and the output of that flip-flop triggers the action for that step.

The file "~cse320/Labs/lab03.part_D.c" contains an incomplete implementation of a four-bit sequencer in a test bed. Modify that circuit as specified in the comments.