Fall Semester, Dr. Punch. Exam #2 (11/09), form 2 B

Last name (printed): ___

First name (printed): ___

Directions:

a) DO NOT OPEN YOUR EXAM BOOKLET UNTIL YOU HAVE BEEN TOLD TO BEGIN.
b) You have 90 minutes to complete the exam (7:00pm – 8:30pm)
c) This exam booklet contains 30 multiple choice questions, each weighted equally (5 points). 5, double-sided pages total
d) You may use one 8.5" x 11" note sheet during the exam. No other reference materials or calculating devices may be used during the examination.
e) Questions will not be interpreted during the examination.
f) You should choose the single best alternative for each question, even if you believe that a question is ambiguous or contains a typographic error.
g) Please fill in the requested information at the top of this exam booklet.
h) Use a #2 pencil to encode any information on the OMR form.
i) Please encode the following on the OMR form:
 ■ Last name and first initial
 ■ MSU PID
 ■ Exam form (see the title of this page)
j) Please sign the OMR form.
k) Only answers recorded on your OMR form will be counted for credit.
l) Completely erase any responses on the OMR form that you wish to delete.
m) You must turn in this exam booklet and the OMR form when you have completed the exam. When leaving, please be courteous to those still taking the exam.

Good luck.

Timing tip. A rate of 2.5 minutes per multiple choice problem leaves 5 minutes to go over any parts of the exam you might have skipped.
// assume correct includes
struct MyStruct{

 string s_member;
 long l_member;
 map<string,long> m_member;

 MyStruct() =default;
 MyStruct(map<string,long> m);
 void method1(string, long);
 int method2();
 MyStruct method3(const MyStruct&);
};

MyStruct::MyStruct(map<string,long> m){
 m_member = m;
 s_member = m.begin() -> first;
 l_member = m.begin() -> second;
}

void MyStruct::method1(string s, long l){
 pair<string,long> p(s,l);
 m_member.insert(p);
}

int MyStruct::method2(){
 int result=0;
 for (auto ele : m_member){
 result += ele.second;
 }
 return result;
}

MyStruct MyStruct::method3(const MyStruct &m){
 MyStruct result;
 for (auto ele : m.m_member){
 if (m_member.find(ele.first) != m_member.end()){
 result.m_member.insert(ele);
 }
 }
 result.s_member = result.m_member.begin() -> first;
 result.l_member = result.m_member.begin() -> second;
 return result;
}

int main (){
 MyStruct ms1({ "bill",1 }, { "alex",2 }, { "fred",3 });
 cout << ms1.s_member << endl; // Line 1
 ms1.method1("fred",4);
 cout << ms1.m_member.size() << endl; // Line 2

 MyStruct ms2({ "john",5 }, { "bill", 6 });
 cout << ms2.method2() << endl; // Line 3
 auto result = ms1.method3(ms2);
 cout << result.m_member.size() << endl; // Line 4
 cout << result.l_member << endl; // Line 5
}

Figure 4
1) For the program in Figure 4, what value is printed by Line 1?
 a) bill
 b) alex
 c) fred
 d) empty string
 e) None of the above

2) For the program in Figure 4, what value is printed by Line 2?
 a) 1
 b) 2
 c) 3
 d) 6
 e) None of the above

3) For the program in Figure 4, what value is printed by Line 3?
 a) 1
 b) 2
 c) 3
 d) 6
 e) None of the above

4) For the program in Figure 4, what value is printed by Line 4?
 a) 1
 b) 2
 c) 3
 d) 6
 e) None of the above

5) For the program in Figure 4, what value is printed by Line 5?
 a) 1
 b) 2
 c) 3
 d) 6
 e) None of the above
6) What type is ele on Line 1 of Figure 1?
 a) vector
 b) vector<string>
 c) vector<string>::iterator
 d) vector<string>*
 e) None of the above.

7) What type is i on Line 2 of Figure 1?
 a) vector
 b) vector<string>
 c) vector<string>::iterator
 d) vector<string>*
 e) None of the above.
8) What output is produced by Line 3 in Figure 1?
 a) dsmp
 b) pmsd
 c) dadsismompop
 d) dad
 e) None of the above.

9) What output is produced by Line 4 in Figure 1?
 a) 1
 b) 2
 c) 3
 d) 4
 e) None of the above.

10) What output is produced by Line 5 in Figure 1?
 a) dad
 b) sis
 c) mom
 d) pop
 e) None of the above.

11) What output is produced by Line 6 in Figure 1?
 a) dad
 b) sis
 c) mom
 d) pop
 e) None of the above.
12) Which of the following are true about C++ functions?
 a) You cannot have more than one function with the same name.
 b) a function must have at least one parameter
 c) C++ uses the types of the parameters and return value to differentiate functions with the same name
 d) the first parameter of a function does not require any type information
 e) None of the above

13) Which of the following are true about STL iterators?
 a) you can treat them as if they were pointers
 b) you cannot use them in conjunction with an STL container
 c) iterators are not templated elements.
 d) All of the above
 e) None of the above

14) Which of the following are true about a lambda construct?
 a) it is a function and can be invoked like a function
 b) it has a name
 c) it cannot be used in a generic algorithm
 d) All of the above
 e) None of the above

15) Which of the following are true about C++ constructors?
 a) They cannot be defined inside of a struct.
 b) They require a return statement to return newly made struct type
 c) They can be overloaded for different parameter lists
 d) All of the above
 e) None of the above

16) Which of the following are correct about methods?
 a) A method can be part of a struct
 b) It is called in the context of an object using a dot call
 c) In calling a method the this pointer is assigned by the compiler
 d) All of the above
 e) None of the above

17) Which of the following is true about a variable m of type map<string,long>?
 a) m has no order to its elements
 b) m["abc"] = 2 assigns the value 2 to the key "abc"
 c) cout << m is a legal operation.
 d) All of the above.
 e) None of the above.

18) Which of the following generic algorithms would you use to multiply all the values of a vector<long> together into a single result?
 a) copy
 b) transform
 c) sort
 d) accumulate
 e) None of the above
For the program in Figure 2, what type is p on Line 1.

a) string
b) map<string,long>::iterator
c) map<string,long>*
d) pair<string,long>::iterator
e) None of the above
20) What type is i on Line 2 in Figure 2?
 a) string
 b) map<string, long>::iterator
 c) map<string, long>*
 d) pair<string, long>::iterator
 e) None of the above

21) What output is produced by Line 3 in Figure 2?
 a) 1
 b) 2
 c) 3
 d) 4
 e) None of the above

22) What output is produced by Line 4 of Figure 2?
 a) 4
 b) 3
 c) 2
 d) 1
 e) None of the above

23) What type is ret_val on Line 5 of Figure 2?
 a) long
 b) string
 c) pair<string, long>
 d) map<string, long>::iterator
 e) None of the above

24) What output is produced by Line 6 in Figure 2?
 a) bill
 b) bob
 c) joan
 d) jill
 e) None of the above

25) What output is produced by Line 7 in Figure 2?
 a) 1
 b) 2
 c) 3
 d) 4
 e) None of the above
26) What output is produced by Line 1 of Figure 3?

a) brahms
b) bach
c) listz
d) copland
e) None of the above
27) What output is produced by Line 2 in Figure 3?
 a) brahms
 b) bach
 c) listz
 d) copland
 e) None of the above

28) For the program in Figure 3, what type is result on Line 3?
 a) vector<string>
 b) string
 c) long
 d) char
 e) None of the above

29) What output is produced by Line 4 of Figure 3?
 a) :6
 b) brahms
 c) brahms:6
 d) bach
 e) None of the above

30) What output is produced by Line 5 of Figure 3?
 a) brahms
 b) brahms,copland
 c) brahms,listz,copland
 d) brahms,bach,listz,copland
 e) None of the above