
SPliT: Optimizing Space, Power, and Throughput for
TCAM-Based Classification

Chad R. Meiners∗ Alex X. Liu Eric Torng Jignesh Patel
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48823, U.S.A.

{meinersc, alexliu, torng, patelji1}@cse.msu.edu

ABSTRACT
Using Ternary Content Addressable Memories (TCAMs) to
perform high-speed packet classification has become the de
facto standard in industry because TCAMs facilitate con-
stant time classification by comparing packet fields against
ternary encoded rules in parallel. Despite their high speed,
TCAMs have limitations of small capacity, large power con-
sumption, and relatively slow access times.
One reason TCAM-based packet classifiers are so large is

the multiplicative effect inherent in representing d-dimension-
al classifiers in TCAMs. To address the multiplicative ef-
fect, we propose the TCAM SPliT architecture, where a
d-dimensional classifier is split into k ≥ 2 low dimensional
classifiers, each of which is stored on its own small TCAM.
A d-dimensional lookup is split into k low dimensional, pipe-
lined lookups with one lookup on each chip. Our experimen-
tal results with real-life classifiers show that TCAM SPliT
reduces classifier size by 84% using only two small TCAM
chips; this increases to 93% if we use five small TCAM chips.

Categories and Subject Descriptors
C.2.5 [Computer Communication Networks]: Local and
Wide-Area Networks—Internet ; C.2.6 [Computer Com-
munication Networks]: Internetworking—Routers

General Terms
Algorithms, Design, Performance, Security

Keywords
Packet Classification, TCAM

1. INTRODUCTION
Packet classification is the core mechanism underlying a

wide variety of network services such as packet filtering,
quality of service, differentiated services (Diffserv), traffic
monitoring, virtual private networks (VPNs), network ad-
dress translation (NAT), load balancing, and traffic account-
ing and monitoring. Given a packet p and a packet classifier
expressed as a list of rules L, the packet classification prob-
lem is to find the first (i.e., highest priority) rule in L that
matches the packet. Table 1 shows an example two rule

∗This work was conducted at Michigan State University.
Chad Meiners is now at MIT Lincoln Laboratory, 244 Wood
Street, Lexington, MA 02421-6426 and may also be reached
by email at chad.meiners@ll.mit.edu

packet classifier. The format of these rules is based upon
the format used in Access Control Lists (ACLs) on Cisco
routers. We use the terms packet classifiers, ACLs, rule
lists, and lookup tables interchangeably in this paper.

Given a packet, quickly finding the first matching rule in
a rule list is difficult if the rule list is stored in traditional
random access memory (RAM). However, it is much easier if
the rule list is stored in Ternary Content Addressable Mem-
ory (TCAM). A TCAM chip takes as input a search key and
then uses hardware circuits to compare the input search key
with all of its occupied entries in parallel. It then uses a pri-
ority encoder to identify the index (or contents if desired)
of the first matching entry. This all takes place in constant
time (i.e., a few clock cycles). Ideally, each rule is stored in
one TCAM entry. The CAM is ternary because each entry
consists of an array of 0’s, 1’s, or *’s (don’t-care values). A
packet header (i.e., a search key) matches a TCAM entry
if their corresponding 0’s and 1’s match. Because of their
high speed, hardware-based classification using TCAM has
emerged as the de facto industry standard [9]. No software-
based techniques that use RAM can match the wire speed
performance of TCAM-based techniques [23].

1.1 Motivation for TCAM Optimization
There is great motivation to reduce the size of TCAM-

based packet classifiers so that smaller, faster, cheaper, and
more power efficient TCAM chips can be used. First, TCAM
chips have limited capacity. The largest available TCAM
chip has a capacity of 72 megabits (Mb), while 2Mb and
1Mb chips are the most popular. Second, TCAM chips con-
sume a large amount of power due to their parallel search-
ing. The power consumed by a TCAM chip is about 1.85
Watts per megabit (Mb) [1], which is roughly 30 times larger
than a comparably sized SRAM chip [10]. Third, the speed
and power efficiency of each memory access decreases sig-
nificantly as TCAM chip capacity increases [1] because the
amount and depth of circuitry needed to perform both the
parallel search and the priority encoding increases signifi-
cantly as TCAM chip capacity increases. For example, based
on the detailed TCAM power model in [1], a single search on
a 72 megabit (Mb) TCAM chip, the largest available, takes
1047.9 nanojoules (nJ) and 17 nanoseconds (ns), whereas the
same search on a 1 Mb TCAM chip takes 34.5 nJ and 1.8
ns. Finally, optimizing TCAM-based packet classifiers also
has economic incentives. Large TCAM chips are very ex-
pensive, often costing more than network processors [10,11].
Although the limited market size may contribute to TCAM’s
high price, the main reason is that TCAM chips have a large

2011 Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems

978-0-7695-4521-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ANCS.2011.36

200

Rule Source IP Dest. IP Source Port Dest. Protocol Action
r1 52.63.1.0/24 192.168.0.1 [1,65534] [1,65534] TCP discard
r2 * * * * * accept

Table 1: An example packet classifier

die area. A TCAM chip occupies 6 times (or more) board
space than an equivalent capacity SRAM chip [10].
However, reducing the size of TCAM-based packet classi-

fiers is a difficult problem. The first difficulty is that encod-
ing packet classification rules into TCAM rules often results
in an explosion in the number of rules, which is referred to
as the range expansion problem. In a typical classification
rule, the fields of source and destination IP addresses and
protocol type are specified as prefixes, so they can be di-
rectly stored in a TCAM; however, the fields of source and
destination port numbers are specified in ranges, which need
to be converted to one or more prefixes before being stored
in a TCAM. This can lead to a significant increase in the
number of TCAM entries needed to encode a rule. For ex-
ample, since 30 prefixes are needed to represent the single
range [1, 65534], 30×30 = 900 TCAM entries are required to
encode the rule r1 in Table 1. The second difficulty is that
packet classifiers are growing rapidly in length and width
due to several causes. First, the deployment of new Internet
services and the rise of new security threats lead to larger
and more complex packet classification rule sets. Second,
with the increasing adoption of IPv6, the number of bits re-
quired to represent source and destination IP addresses will
grow from 64 to 256. The growth of packet classifier length
and width puts more demand on TCAM capacity, power
consumption, and heat dissipation.

1.2 Limitations of Prior Art
Previous research on reducing the size of TCAM-based

packet classifiers falls into two categories: equivalent trans-
formation [6, 13, 14] and range encoding [4, 5, 9, 15, 19, 25].
Equivalent transformation works by finding an equivalent
classifier that is smaller than the original one. Range en-
coding works by mapping interval ranges to new ranges that
can be more efficiently stored in TCAM. In both cases, the
goal is to produce smaller classifiers that can be stored in
smaller TCAM chips.
The fundamental limitation of previous TCAM optimiza-

tion schemes is that they still produce d-dimensional clas-
sifiers, where d is the total number of packet fields that a
classification rule examines. This makes them all vulnerable
to the multiplicative effect that is inherent in representing
d-dimensional classifiers in TCAMs. Given a rule set with
n rules, the actual number of distinct values in field i, de-
noted qi, is typically much smaller than n as distinct rules
in a classifier often share a number of field values [3,22,23].
The multiplicative effect is that when some fields combine
poorly, the number of rules needed in a single d-dimensional
classifier is on the order of the product of the relevant qi val-
ues. For example, in the simple example of rule r1 in Table
1, the multiplicative effect results in the direct expansion. In
this specific example, equivalent transformation and range
encoding may effectively deal with range expansion and thus
the resulting multiplicative effect. However, this is not al-
ways the case. For example, consider the 2-dimensional pre-
fix classifier in Figure 1(a). This is the smallest possible

Single-lookup

001,001 accept
001,010 accept w. log
001,*** discard
010,001 accept
010,010 accept w. log
010,*** discard
100,001 accept
100,010 accept w. log
100,*** discard
, discard w. log

Multi-lookup

t1
001 t2
010 t2
100 t2
*** t3

t2
001 accept
010 accept w. log
*** discard

t3
*** discard w. log

(a) (b)

Figure 1: Multiplicative effect vs. additive effect

2-dimensional classifier, so equivalent transformation can-
not make it smaller. Likewise, most prior range encoding
schemes cannot reduce the number of TCAM bits it re-
quires because it is already specified in prefixes. In many
cases, the multiplicative effect results in the replication of
decisions and values. That is, in Figure 1(a), the rules 1-3,
4-6 and 7-9 share the same decisions and the same second
field values.

1.3 Our TCAM SPliT Approach
To overcome the fundamental limitations imposed by the

the multiplicative effect, we propose splitting a single d-
dimensional classifier stored on a single large and slow TCAM
chip into k ≤ d smaller classifiers stored on a pipeline of k
small and fast TCAM chips. In our experimental results
with real-world classifiers, we obtain the best results using
k = d, but we observe that k = 2 is sufficient to achieve
impressive results. Since many currently deployed TCAM-
based packet classification systems already use two TCAM
chips [11], they can receive the benefits of TCAM SPliT with
a two-stage pipeline with only a minor architectural adjust-
ment. Specifically, we split the d-dimensional classifier into
a j-dimensional and a (d− j)-dimensional classifiers.

TCAM SPliT reduces the total required TCAM space
because it is uniquely designed to mitigate the multiplica-
tive effect by splitting apart dimensions that combine ineffi-
ciently. TCAM SPliT also reduces TCAM entry widths. For
example, we represent the 2-dimensional classifier in Fig-
ure 1(a) using the three one-dimensional tables in Figure
1(b) requiring a total of 8 rules, each of which is only 3 bits
wide. Thus, TCAM SPliT more than halves the required
number of TCAM bits. Furthermore, a greater reduction
in the number of entries would be obtained if the number
of distinct entries qi in each dimension were larger. These
reductions enable the use of small, and fast TCAM chips
which leads to faster packet classification with lower power
consumption.

We address several technical challenges in implementing
TCAM SPliT. The first challenge is determining how to split
a d-dimensional packet classifier into k classifiers of smaller
dimension. We must decide how to partition the d fields
into k classifiers and how to order the d fields. We deal

201

with this challenge by converting a given classifier into a
decision tree representation where each nonterminal node
represents a one-dimensional classifier. The result of each
of the first d− 1 lookups is a pointer to the next node that
needs to be searched. We find the best partition of the d
fields and the best order of fields by considering all possible
options. Given that d is typically 5 and k ≤ d, considering
all options is feasible. Based on our experience, we have
several candidate partitions and orderings that can be used
if trying all possible options is infeasible.
A second challenge is the construction of the k lookup ta-

bles where each of the last k − 1 lookup tables is composed
of many separate tables. The challenge we face is determin-
ing how to minimize the space occupied by these separate
tables. To address this challenge, we leverage existing tech-
niques for compressing finite state automata [18] where we
save TCAM space by having one TCAM entry represent
entries from multiple tables.

1.4 Key Contributions
We make significant contributions in terms of both what

TCAM SPliT can achieve and how TCAM SPliT works.
TCAM SPliT is the first scheme that significantly improves
TCAM-based packet classification in the three aspects of
space, power, and throughput. TCAM SPliT achieves the
above result by being the first scheme that fundamentally
addresses the multiplicative effect in TCAM-based packet
classification by decomposing a high dimensional classifier
into multiple low dimensional classifiers. We also show how
DFA compression techniques can be applied to further re-
duce TCAM space requirements of packet classifiers.
We implemented our algorithms and conducted experi-

ments on both real-world and synthetic packet classifiers.
Our experimental results show that TCAM SPliT signifi-
cantly reduces space. Because small TCAMs generally run
faster and consume less power than large TCAMs, TCAM
SPliT also significantly reduces power consumption and im-
proves classification throughput. On real-world classifiers,
TCAM SPliT achieves an average space compression ratio
of 6.4% with k = d = 5 and 15.6% with k = 2; for our larger
classifiers with at least 5000 direct expansion rules, TCAM
SPliT achieves an average space compression ratio of 3.7%
with k = d = 5 and 28.3% with k = 2. We then used
Agrawal and Sherwood’s TCAM model to model TCAM
SPliT’s impact on power, throughput, and latency. Our
modeling results suggest TCAM SPliT can simultaneously
reduce energy consumption per packet classified by 35.5%
to 89.6% and increase packet classification throughput by
34% to 489%. Although TCAM SPliT does increase the la-
tency of processing a single packet, this is a negligible price
because throughput rather than latency is the key perfor-
mance metric.
The rest of this paper proceeds as follows. We review re-

lated work including key building blocks for TCAM SPliT in
Section 2. We present the technical details of our approach
in Sections 3, 4, and 5. We present experimental results in
Section 6, we present performance modeling results in Sec-
tion 7, and we draw conclusions in Section 8.

2. PREVIOUS AND RELATED WORK
We first describe Firewall Decision Diagrams (FDDs), an

important data structure from previous work that we use
in TCAM SPliT. We describe again the multiplicative ef-

fect using FDDs. We then compare related work to TCAM
SPliT in the context of FDDs and their ability to address
the multiplicative effect. Finally, we briefly address related
work in compressing finite state automata that we leverage
to further shrink the resulting classifier.

2.1 Firewall Decision Diagrams
We represent classifiers using a decision tree representa-

tion called a Firewall Decision Diagram [12]. “A Firewall
Decision Diagram (FDD) with a decision set DS and over
fields F1, · · · , Fd is an acyclic and directed graph that has
the following five properties: (1) There is exactly one node
that has no incoming edges. This node is called the root.
The nodes that have no outgoing edges are called termi-
nal nodes. (2) Each node v has a label, denoted F (v),
such that F (v) ∈ {F1, · · · , Fd} if v is a nonterminal node
and F (v) ∈ DS if v is a terminal node. (3) Each edge
e:u → v is labeled with a nonempty set of integers, de-
noted I(e), where I(e) is a subset of the domain of u’s label
(i.e., I(e) ⊆ D(F (u))). (4) A directed path from the root
to a terminal node is called a decision path. No two nodes
on a decision path have the same label. (5) The set of all
outgoing edges of a node v, denoted E(v), satisfies the fol-
lowing two conditions: (i) Consistency : I(e) ∩ I(e′) = ∅
for any two distinct edges e and e′ in E(v). (ii) Complete-
ness:

⋃
e∈E(v) I(e) = D(F (v)).” A full-length ordered FDD

is an FDD where in each decision path all fields appear ex-
actly once and in the same order [17]. We overload the term
“FDD” to mean “full-length ordered FDD” if not otherwise
specified. An FDD construction algorithm, which converts
a packet classifier to an equivalent FDD, is presented in [12].
Figure 2(b) shows the FDD constructed from the classifier in
Figure 2(a), where a stands for accept, d stands for discard,
and dl stands for discard with log.

We typically work with a reduced FDD where all isomor-
phic subgraphs in the FDD are merged [17]. Reducing an
FDD minimizes the number of nodes while retaining all deci-
sion path information. Figure 2(c) shows the resultant FDD
reduced from the one in Figure 2(b).

2.2 FDDs and the Multiplicative Effect
Reduced FDDs illustrate both the multiplicative effect

and different opportunities for saving TCAM space. Intu-
itively, each rule in a classifier partially satisfies some de-
cision path in a reduced FDD where the choice of decision
paths is a function of the order of fields in the FDD. It of-
ten takes multiple prefix rules to fully cover any decision
path, either because the labels on a given edge in the de-
cision path correspond to non-adjacent intervals or because
of range expansion. The decision path with the two edges,
from the root to v4 and from v4 to decision d, in the reduced
FDD in Figure 2(c) illustrates both cases: the first edge is
labeled with 3 prefixes because the values are not adjacent
and because of range expansion of the range [1, 3]; the sec-
ond edge is labeled with 2 prefixes due to range expansion of
the range [2, 4]. For any edge e in a reduced FDD, let pc(e)
denote the minimum number of prefixes needed to express
I(e). The minimum number of non-overlapping rules needed
to cover a given decision path P is then

∏
e∈P pc(e). For ex-

ample, we need 3 × 2 = 6 non-overlapping rules to cover
the decision path mentioned earlier in the reduced FDD in
Figure 2(c). This multiplicative effect is magnified as we
increase the number of fields.

202

F1 F2 Decision
*** 101 discard w. log
000 100 discard
000 *** accept
0** 00* accept
0** 11* accept
100 00* accept
101 00* accept
101 110 accept
11* 00* accept
11* 11* accept
*** *** discard

(a)
⇓ FDD Construction

(b)
⇓ FDD Reduction

(c)

Figure 2: Example of FDD construction and reduc-
tion

Of course, we can use the first-match nature of TCAMs to
generate overlapping rules that more efficiently cover deci-
sion paths. For example, the decision path mentioned earlier
is actually handled by the single default rule at the end.

2.3 Comparison to Previous Work
Previous TCAM optimization schemes for packet classi-

fiers have searched for ways to minimize the multiplicative
effect and cover decision paths with as few rules as possi-
ble. This work has used one of two types of techniques:
equivalent transformation [2, 6, 13,14,16,21] and reencoding
[4, 5, 9, 15, 17, 19, 25]. In equivalent transformation, the goal
is to convert a given d-dimensional classifier into a seman-
tically equivalent d-dimensional classifier with fewer TCAM
entries. The basic idea behind most equivalent transforma-
tion approaches is to reduce the number of prefixes needed
to cover some edges e in the reduced FDD by specifying
other edges first as we illustrated in the previous subsection.
However, we can only save on some edges by specifying other
edges first, so there are clear limits to how much any equiva-
lent transformation technique can reduce the multiplicative

effect in multi-dimensional classifiers. That said, equivalent
transformation is an important approach for TCAM opti-
mization, and we use the current state-of-the-art technique,
TCAM Razor [13], to compress the low dimensional classi-
fiers TCAM SPliT creates when k < d.

In reencoding, each dimension of a classifier is reencoded.
The result is a smaller, semantically equivalent, reencoded d-
dimensional classifier. Early papers simply encoded difficult
ranges in a compact form in order to minimize the effects
of range expansion [15]. More recent reencoding work re-
duces the number of bits required to encode each dimension
and thus the resulting width of TCAM entries [17, 19, 25].
For example, consider the topological transformation tech-
nique [17]. The domain compression topological transforma-
tion technique identifies all values within a given field do-
main that are equivalent to each other and reencodes them
with a single value. For the reduced FDD in Figure 2(c),
domain compression identifies four equivalence classes for
field F1: {000}, {100}, {101} and {001, 010, 011, 110, 111}
and six equivalence classes for field F2: {000,001}, {010,
011}, {100}, {101}, {110}, and {111}. As such, domain
compression leads to only a single label on each of the out-
going edges of the root node in the reencoded reduced FDD.
Thus, the multiplicative effect of d-dimensional classifiers is
greatly reduced. However, even topological transformation
cannot completely eliminate the multiplicative effect, par-
ticularly in more complex classifiers with more dimensions.
That is, while pc(e′) for reencoded edge e′ might be much
smaller than the pc(e) for the original edge e, pc(e′) will
still likely be greater than 1 for many edges and thus the
multiplicative effect cannot be avoided. Another issue with
range encoding is that when a packet arrives, it must first
be preprocessed according to the reencoding scheme. The
reencoded packet is used as the search key on the reencoded
classifier. This reencoding requires either extra hardware
(e.g. d TCAM chips to implement the reencoding) or extra
per packet processing time. Unlike TCAM SPliT, it is not
clear that this reencoding can be effectively done with fewer
than d−1 TCAM chips (the protocol field can be reencoded
using SRAM).

In contrast to equivalent transformation and reencoding,
TCAM SPliT employs a divide-and-conquer strategy that
mitigates or completely eliminates the multiplicative effect
depending on how many stages are used. In single-field
TCAM SPliT where we construct a d-stage pipeline, TCAM
SPliT completely eliminates the multiplicative effect by cre-
ating a TCAM table at each node in the reduced FDD.
That is, each rule is a one-dimensional rule where the de-
cision is the corresponding TCAM table that needs to be
searched in the next lookup. Because there are no multi-
dimensional rules, we never have to multiply pc(e1) with
pc(e2) for any two edges e1 and e2. In the extreme, if we
used non-overlapping rules for each one dimensional clas-
sifier, the total number of prefix rules we would need for
all the classifiers would be just

∑
e pc(e). We employ op-

timal one-dimensional equivalent transformation algorithms
to further reduce the total number of prefix entries. If we
employ a 2-stage pipeline, we break the d-dimensional clas-
sifier into a j-dimensional classifier and a (d−j)-dimensional
classifier. This mitigates but does not completely eliminate
the multiplicative effect.

TCAM SPliT supports more implementation modes than
topological transformation. Specifically, TCAM SPliT can

203

use as few as two chips whereas Topological Transformation
needs six chips (or five chips if we use SRAM to encode
the protocol field). This critical difference means that we
can consider deploying TCAM SPliT immediately as many
current TCAM-based packet classification systems use two
TCAM chips [11], whereas Topological Transformation can-
not be deployed until new packet classification hardware
with 5 or more TCAM chips are in place.
The basic divide-and-conquer strategy has been used in

prior software-based packet classification algorithms [3, 7,
20]. However, this paper represents the first application
of the basic divide-and-conquer strategy to TCAM-based
packet classification where we reduce the number of dimen-
sions in each resulting classifier.
Finally, when we use single-field TCAM SPliT, we create

a separate table for each node in the reduced FDD, and all
the node tables for a given field are grouped together into
a single TCAM table. We use techniques from finite state
automata compression [18] to reduce the size of each field’s
single TCAM table by having one TCAM entry represent
entries from multiple node tables. We do make some ad-
justments to the techniques to maximize their efficiency for
our application.

3. TCAM SPliT APPROACH
We construct a d-stage TCAM pipeline from an input clas-

sifier as follows. We use existing reduced FDD construction
algorithms to convert the classifier into a reduced FDD. We
then implement the following two steps which are illustrated
in Figure 3 using the reduced FDD from Figure 2(c) as in-
put: (1) Node Table Generation: treat each nonterminal
node in the reduced FDD as a 1-dimensional classifier and
generate a TCAM table for this classifier. (2) Field Table
Generation: for each field Fi, merge all the Fi node tables
into one TCAM table, which will serve as one stage of the
TCAM pipeline.
Node table generation works as follows. We view each

nonterminal node v in the reduced FDD as a one-dimensional
packet classifier where v’s decisions are the nodes at the
next level in the reduced FDD. We construct an equivalent
TCAM table Table(v) for v as follows. Let mi be the num-
ber of nodes with label Fi for 1 ≤ i ≤ d. First, for each field
Fi node u, we assign a unique ID of
log (mi − 1)� bits to u.
In the case where there is a single Fi nonterminal node, no
ID is assigned. For example, the IDs for the four F2 nonter-
minal nodes in Figure 3(a) are 00, 01, 10 and 11, and no ID is
assigned to the single F1 nonterminal node. Second, we gen-
erate an initial classifier for v by generating one rule for each
prefix on each outgoing edge of v. Third, we minimize the
number of TCAM entries in Table(v) by using an optimal,
polynomial-time algorithm for minimizing one-dimensional
classifiers [21]. Figure 3(a) shows the five minimal TCAM
tables that correspond to the five nonterminal nodes.
Next, we generate unique table ID for every nonterminal

node v, and we prepend v’s ID to the predicate of each rule
in Table(v). Because the IDs for any two field Fi nodes v1
and v2 are distinct, all tables of field Fi can be concatenated
into a single field table. The field table for Fi is denoted
by Table(Fi). Figure 3(b) illustrates this simple field table
generation process.

3.1 Packet Processing
We load each of the d TCAM tables, one per field, into its

own TCAM chip which are chained together into a d-stage

(a)

(b)

Figure 3: Example of Node table generation (a) and
Field table generation (b)

Figure 4: Example of a pipelined-lookup

pipeline, which is called a single-field pipeline. Correspond-
ingly, a d-dimensional packet lookup is SPliT into d lookups.
The lookup result of the i-th chip is part of the search key
for the (i + 1)-st chip, and the result of the last chip is
the decision for the packet. Figure 4 illustrates the packet
lookup process for the two tables Table(F1) and Table(F2) in
Figure 3(b). Suppose two packets (010, 001) and (111, 010)
arrive one after the other. When (010, 001) arrives, the first
search key, 010, is formed and sent to Table(F1) while the
rest of the the packet (001) is forwarded to Table(F2). When
the next packet (111, 010) arrives, table Table(F1) has sent
the search result 11 to table Table(F2). When the first
search key for the second packet 111 is formed, the second
search key for the first packet 11001 is formed in parallel,
and both are sent to tables Table(F1) and Table(F2), re-
spectively. This cycle will yield a result of accept for the
first packet and a result of 11 for the second packet.

204

4. OPTIMIZED FIELD TABLE GENERATION
In the simple field table generation approach, we concate-

nate the individual node tables together using table IDs to
distinguish the node tables contained within the field table.
We now describe how we use techniques from finite state
automata compression [18] to further compress field tables
by exploiting redundancy among the node tables of field
Fi. The basic idea is as follows. During FDD reduction,
FDD nodes that are equivalent to each other are merged
together. For example, in Figure 2(b), nodes u2 and u5 in
field F2 are equivalent and are merged into node v4 in the re-
duced FDD in Figure 2(c). However, if two nodes and their
resulting TCAM tables are very similar but are not iden-
tical, FDD reduction cannot merge these nodes and simple
field table generation will not exploit the similarity of the
resulting TCAM tables to reduce the number of TCAM en-
tries. For example, the node tables for v2 and v3 in field
F2 in Figure 3(a) are identical except for input 110, and
no compression is observed in the resulting F2 field table in
Figure 3(b). However, using the shadow encoding technique
proposed in [18], we can exploit the similarity of the node
tables to compress the resulting F2 field table as shown in
Figure 5.

4.1 Shadow Encoding for TCAM SPliT
Consider any field Fi. We exploit two key properties when

optimizing field table generation. First, we have complete
freedom in assigning the table IDs for field Fi node tables.
Second, we can use ternary strings in the table ID column
of the resulting field table to match multiple table IDs. We
illustrate our techniques using the reduced FDD from Fig-
ure 3(a) with four F2 nodes (v1, v2, v3 and v4).
In simple field table generation, we used node IDs 00,

01, 10, and 11 for v1, v2, v3 and v4, respectively. We now
use node IDs 01, 10, 11, and 00 instead for v1, v2, v3 and
v4 so that the node IDs for the similar nodes v2 and v3
differ in only the final bit. We now choose to have one
node defer to a second node; in this case, we choose to have
v3 defer to v2. The idea is that v3’s node table Table(v3)
will not specify entries that it shares in common with v2’s
node table Table(v2). Instead, it defers these common en-
tries to Table(v2). We achieve this deferment by prepend-
ing the ternary code 1∗ instead of v2’s ID 10 to each rule
in Table(v2). This works because 1∗ matches both 10 and
11 which means searches with either v2 or v3’s node ID will
match the rules in Table(v2). We then remove all the com-
mon entries from Table(v3) leaving only the entry with input
110, and we place Table(v3) before Table(v2) in Table(F2).
We continue to apply the technique to remove the redun-
dant entries in Table(v2) and Table(v1) by having v2 and v1
defer to v4. Figure 5 shows the final Table(F2).
In the context of finite state automata minimization, Mein-

ers et al. refer to this process as shadow encoding [18]. They
refer to the binary ID assigned to each node as its state ID,
and the ternary code that is prepended to each node’s table
entry as its shadow code. We do not apply shadow encod-
ing to the first field since that field has only one node. To
apply shadow encoding to optimize field Fi field table gen-
eration for i ≥ 2, we perform the following two steps. First,
we construct a deferment forest where each Fi node defers
to at most one other Fi node and the resulting directed
graph is acyclic. Within Table(Fi), Table(vi) appears be-
fore Table(vj) if vi defers to vj . Second, we compute binary

Figure 5: Complete Shadow Encoding example

state IDs and ternary shadow codes for each node given the
deferment forest such that the resulting Table(Fi) has as few
entries as possible and is equivalent to the original Table(Fi)
produced by the simple field table generation method. We
now describe how we adapt the techniques from [18] to ac-
complish these two tasks.

4.2 Deferment Forest Construction
We use the techniques in [18] to construct the deferment

forest which used ideas from previous finite state automata
compression work, e.g. [8]. We begin by constructing a space
reduction graph (SRG) where each vertex is an Fi node in
the reduced FDD and edge (u, v) has weight equal to the
number TCAM entries that will be eliminated if we have
one node defer to the other node. We then find a maximum
spanning tree in the SRG. Finally, we pick a root state and
direct all edges towards it to get the final deferment tree.

There are some differences in our application of shadow
encoding and the original application of shadow encoding
in [18]. First, in the original setting of finite state automata
compression, it was helpful to eliminate edges with relatively
low weight from the SRG. This led to having a maximal
spanning forest with several trees of similar structure. In our
application, eliminating small weight edges is not helpful,
so we include all non-zero weight edges while constructing
the maximum spanning forest; thus, we almost always get a
single tree instead of a forest.

Second, we may not be able to use the maximum spanning
tree because of TCAM entry width bounds. Specifically,
if using the maximum spanning tree creates shadow code
lengths that exceed 40 minus the width of field Fi, then the
resulting width of Table(Fi) will exceed 40 bits which means
80 bit TCAM entries will be required. Instead of using 80 bit
TCAM entries, we adjust the deferment forest construction
to get a shorter shadow code length by setting a limit on the
diameter of each tree in the deferment forest. Because the
shadow code length depends on the depth of the deferment
tree, this produces a smaller shadow code length. The cost

205

Figure 6: Shadow Encoding Algorithm example

is that we get more TCAM rules as some high weight edges
in the SRG will be dropped because of the limit on the
diameter. This increase in the number of rules is beneficial
as long as it does not double the number of rules.

4.3 Computing Shadow Codes and Table IDs
Given a deferment tree DT , we use the shadow encoding

algorithm from [18] to compute binary state IDs and shadow
codes for each node in the tree. We briefly describe the
algorithm here and illustrate its execution with an example.
For a given node v, SC(v) is its shadow code and ID(v) is
its state ID. We require the following two properties from
a shadow encoding: (1) The state ID and shadow code of
all the nodes must be unique and have the same length. (2)
The SC(vi) matches ID(vj) if and only if node vj is in the
subtree of DT rooted at vi (including vi).
We use a recursive algorithm to compute the encoding for

DT . The ternary shadow codes created by the algorithm
are always prefix codes. The idea behind the algorithm is
as follows. Let v be the root node of DT , C be the set
of child nodes of v and vi ∈ C be one of v’s children. Let
DT (vi) denote the subtree ofDT rooted at vi. Let SC(vi) =
Bi ·Ci, where Bi = {0, 1}x is the binary prefix part of SC(vi)
and Ci = {∗}l−x. Shadow encoding is built on two key
observations: (1) The first |Bi| bits of the state ID and
shadow code of all the nodes in DT (vi) are exactly Bi which
“distinguishes” subtree DT (vi) from the rest of DT . (2) The
last l − x bits of the state ID and shadow code of all nodes
in DT (vi) forms a valid shadow encoding of DT (vi).
So, to compute the shadow encoding for DT , we first re-

cursively compute a valid shadow encoding for DT (vi) for
all vi ∈ C. Then we just assign a unique bit sequence to
each child subtree vi and v itself. The only requirement on
these identifying bit sequences Bi is that Bi should not be a
prefix of Bj for any i = j. A simple binary assignment using
log(|C|+1) bits will work. However, in order to minimize the
length of the shadow codes and state IDs, we use a variant
of Huffman encoding. Figure 6 shows the recursive step of
the algorithm on the root state of the deferment tree for the
example in Figure 5.

5. TCAM SPliT DEPLOYMENT
We now discuss how we can deploy TCAM SPliT if we

have fewer than d TCAM chips, how to proceed if some
fields are not needed, and how we process classifier updates.

Figure 7: Example of multi-field TCAM SPliT

5.1 Multi-Field TCAM SPliT
In multi-field TCAM SPliT, we perform a multi-field look-

up on some TCAM chips. This allows us to reduce the
number of TCAM chips and lookup stages to any number
less than d. We implement multi-field TCAM SPliT by
horizontally cutting an FDD into k pieces; that is, we di-
vide the d fields into k partitions and generate a multi-field
TCAM table for each partition. The top partition is a sin-
gle, smaller dimensional FDD or sub-FDD. The remaining
partitions each contain multiple sub-FDDs. For example,
in Figure 7, we partition a 5-field FDD into two partitions.
The top partition consists of one 3-dimensional sub-FDD
over fields F1, F2, and F3, and the bottom partition consists
of eight 2-dimensional sub-FDDs over fields F4 and F5.

Our procedure for generating k multi-field TCAM tables is
similar to our procedure for generating d single-field TCAM
tables in single-field TCAM SPliT with two main differences.
First, we generate a multi-field TCAM table from each sub-
FDD rather than a single-field TCAM table from each non-
terminal node. Second, we optimize each multi-field TCAM
table using a multi-field classifier minimization algorithm; in
this case, we use the TCAM Razor algorithm, but we could
use other multi-field minimization algorithms. In single-field
TCAM SPliT, we optimize each single-field TCAM table us-
ing an optimal single-field classifier minimization algorithm.
Packet processing in multi-field TCAM SPliT is similar to
that in single-field TCAM SPliT except that we perform a
multi-field lookup at each stage.

5.2 Field Elimination and Short Circuiting
So far, we have assumed the use of full-length FDDs where

every classifier field is used. Also, we assume that every
packet will visit every stage of the pipeline. In some cases,
both of these assumptions are unnecessary, and we can im-
prove performance with field elimination and lookup short
circuiting. We first describe field elimination. In some
packet classifiers, a given field such as source IP may be
irrelevant. This is the case if every node of that field has
only one outgoing edge in the reduced FDD. In this case,
we eliminate the field from consideration and partition the
remaining fields among the k chips in multi-field TCAM
SPliT. After we perform partitioning, it may still be the case
that some nodes in the FDD will still have only one outgo-
ing edge. For example, in a 2-stage pipeline, the decision
for some packets may be completely determined by the first
lookup. In such a case, we can use an extra bit to denote

206

that the next lookup can be eliminated or short circuited
and immediately return the decision. Note that unless it is
a trivial classifier, there will be at least one lookup.

5.3 Classifier Update
Packet classification rules periodically need to be updated.

The common practice for updating rules is to run two TCAMs
in tandem where one TCAM is used while the other is up-
dated [11]. In addition to the above practice, we can update
using a total of k small TCAM chips as long as the pipeline
can be configured to be bi-directional. The k chip update so-
lution would be to write the new classification rules into the
unused portion of each TCAM chip. When TCAM space re-
quirements for a classifier are not evenly distributed among
the k TCAM chips, we suggest reversing the order of the
chips in the pipeline for the next update. That is, we write
in the updated rules for the ith chip into the free space in the
current k − ith chip for 1 ≤ i ≤ k. Once the newly updated
rules are ready, we allow the pipeline to clear, change the
active portion of each TCAM, and then reverse the pipeline
with the new updated classifiers. This type of update is sup-
ported because TCAM chips allow regions of the TCAM to
be deactivated.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness and efficiency

of our TCAM SPliT approach on both real-world and syn-
thetic classifiers. We refer to TCAM SPliT with a k-stage
pipeline as SPliT-k. We evaluate only SPliT-2 (this solution
can be deployed on current packet processing hardware with
only minor modification) and SPliT-5 (this solution maxi-
mizes compression). We include in our results two unfair
“apples to oranges” comparisons. We compare SPliT-2 to
TCAM Razor [13], the current state-of-the-art for equiva-
lent transformation, to assess how much benefit we gain by
going from one TCAM lookup to two TCAM lookups. We
compare SPliT-5 to 6-chip topological transformation [17],
the current state-of-the-art reencoding scheme, to compare
these two different proposals for redesigning packet classifi-
cation systems.

6.1 Methodology
We first performed experiments on a set of 40 real-world

packet classifiers, which is denoted by RL. The classifiers in
RL were chosen from a complete set of real-world classifiers,
which is denoted by cRL, obtained from various network
service providers, where the classifiers range in size from a
handful of rules to thousands of rules. We partition the
classifiers in cRL into 40 groups where the classifiers in each
group share similar structure. For example, the ACLs con-
figured for the different interfaces of a router often share
a similar structure. We created RL by randomly choosing
one classifier from each of the 40 groups so that our results
would not be skewed by the relative size of each group. To
ensure this construction was fair, we ran experiments on all
classifiers in cRL. As expected, our results for all classifiers
within each of the 40 structurally similar groups were es-
sentially identical, varying by at most two TCAM entries.
Finally, we divide the classifiers in RL into two subsets, RLa
and RLb, based on the number of direct expansion rules in
the classifier. RLa contains classifiers with less than 5000
rules in the direct expansion, and RLb contains classifiers
with greater then 5000 rules. RLa contains 34 classifiers

Average
Intervals Prefix Intervals

P SIP SP DIP DP P SIP SP DIP DP
RL 6.2 143.2 3.7 123.4 44.1 14.3 396.7 19.6 407.9 154.7
SY N 1.0 238.7 95.3 3.3 2.4 1.0 643.8 290.3 31.7 12.4

Table 2: Average number of atomic intervals and
atomic prefix intervals for Protocol, Source IP,
Source Port, Dest. IP, and Dest. Port

with an average of 1133 direct expansion rules, and RLb
contains 6 classifiers with an average of 8877 direct expan-
sion rules.

Because we could not acquire a larger number of real-
world packet classifiers due to their confidential nature, we
generated a set of synthetic classifiers SY N with the num-
ber of rules ranging from 250 to 8000. The predicate of each
rule has five fields: source IP, destination IP, source port,
destination port, and protocol type. We based our genera-
tion method upon Singh et al.’s [20] model of synthetic rules.
We chose this model over Taylor&Turner’s Classbench [24]
because Classbench does not generate decisions, and there
are not guidelines for assigning decisions to each rule.

To stress test the sensitivity of TCAM SPliT to the num-
ber of decisions in a classifier, we created a set of classifiers
RLU by replacing the decision of every rule in each classifier
by a unique decision. Similarly, we created the set SY NU .
Thus, each classifier in RLU (or SYNU) has the maximum
possible number of distinct decisions. Such classifiers might
arise in the context of rule logging.

To give a sense of the complexity of the classifier sets RL
and SY N , we compute the minimum number of “atomic
intervals” in each field of each classifier where an atomic
interval is one that does not cross any rule range boundary.
We also perform direct expansion on each of these atomic
intervals to compute how many “atomic prefix intervals” are
contained in each field of each classifier. Table 2 shows the
average number of unique atomic intervals and atomic prefix
intervals for each field for RL (and thus RLU) and SY N
(and thus SY NU).

We evaluate SPliT-2 where each chip has a 40 bit or 80
bit entry width. The variable order that we use to convert a
classifier to an equivalent FDD affects the number of tables
generated by SPLIT-2 and thus its TCAM space efficiency.
There are 5! = 120 different permutations of the five packet
fields (source IP address, destination IP address, source port
number, destination port number, and protocol type). For
RL, we tried each of the 5! = 120 permutations. For each
field order, we then try all five partitions of the fields. For
each partition, we use a TCAM entry width that is large
enough to store all the fields plus the required ID bits. In
most cases, we need an 80 bit entry width, but in some cases,
we can use a 40 bit entry width for one of the two tables.
For each classifier, we report compression results for the best
field order and partition combination.

We evaluate SPliT-5 where each chip has a 40 bit or 80
bit entry width. We again try each of the 5! = 120 permu-
tations and report results for the best permutation for each
classifier. We typically use a 40 bit entry width, but some-
times an IP field needs more bits if the number of tables in
that IP field is too large. Specifically, given IP addresses of
32 bits, we have only 8 bits to use for state IDs and shadow
codes. In such cases, we use an 80 bit entry width. For this
reason, the best results often occur when the two IP fields

207

are the first fields in the permutation order as this reduces
the number of IP field tables.
We verify the correctness of our resulting TCAM SPliT

classifiers using the following procedure. Let C be an origi-
nal classifier where all the rules in C are range rules and CS

be the classifier produced by running TCAM SPliT on C.
We verify that both C and CS produce the same decision
for a set of test packets. When running CS , we simulate
the pipelined lookup process. We emulate the first match
semantics of TCAM tables by sequentially searching the list
of rules for each field’s table. We construct our set of test
packets as follows. For any rule rj of C and any field Fi, let
[bij , e

i
j] be the range for rj in Fi. For field Fi, we create a

set of test values Zi as follows. Initially, Zi is empty. For
each rule rj ∈ C, we add bij − 1, bij , e

i
j , and eij + 1 to Zi.

Finally, we take the Cartesian product of all the Zi sets to
create our set of test packets.
We use an average compression metric for measuring the

space effectiveness of any optimization algorithm A on a set
of classifiers S. Let C denote a classifier in S, and |S| the
number of classifiers in S. We use A(C) and Direct(C) to
denote the number of TCAM bits used for classifier C by al-
gorithm A and direct expansion, respectively. We define the

compression ratio of algorithm A on classifier C as |A(C)|
|Direct(C)| .

For a set of classifiers S, we define the average compression

ratio of algorithm A over S to be
ΣC∈S

|A(C)|
|Direct(C)|
|S| .

6.2 Average Compression Results
Table 3 shows the average compression ratios for SPliT-

2, SPliT-5 without shadow encoding (denoted as Dcomp-5),
SPliT-5 with shadow encoding (denoted as SPliT-5), TCAM
Razor, and topological transformation for all of our classifier
sets. We emphasize that some of the following comparisons
are unfair “apples to oranges” comparisons. That said, they
do provide useful insights into the relative effectiveness of
the compared techniques.
We begin by focusing on the performance of SPliT-5 which

maximizes average compression. We first observe that SPliT-
5 significantly outperforms topological transformation on our
real-life packet classifiers with an average compression ratio
of 6.4% on RL which is less than 1/2 of the average com-
pression ratio for topological transformation on RL. Second,
we see that the decomposition alone (Dcomp-5) which elim-
inates the multiplicative effect is extremely effective with
an average compression ratio of 10.3% on RL. Third, we
see that the shadow encoding optimization is important as
the average compression ratio with shadow encoding drops
to 6.4% which is over 37% smaller than 10.3%. Fourth, we
see that SPliT-5 is most effective on RLb which are the large
classifiers which need the most compression. Specifically, for
the large classifiers in RLb with at least 5000 direct expan-
sion rules, SPliT-5 achieves an average compression ratio of
9.2% without shadow encoding and 3.7% with shadow en-
coding. This 3.7% average compression ratio on RLb is less
than 3/7 of topological transformation’s average compres-
sion ratio of 8.9% on RLb.
We hypothesize that the improved performance of shadow

encoding on large classifiers is due to more nodes in the
reduced FDD which creates more opportunities for sharing
transitions. Finally, we see that topological transformation
slightly outperforms SPliT-5 on the RLU and SY NU data
sets where each rule has a unique decision.

SPliT-2 Razor Dcomp-5 SPliT-5 Topo.
RL 15.6 % 31.3 % 10.3 % 6.4 % 13.8 %
RLa 13.3 % 29.7 % 10.5 % 6.8 % 14.7 %
RLb 28.3 % 40.5 % 9.2 % 3.7 % 8.9 %
RLU 36.5 % 47.4 % 35.1 % 24.3 % 20.8 %
SY N 3.8 % 10.4 % 1.7 % 1.4 % 2.5 %
SY NU 24.0 % 42.7 % 13.6 % 12.3 % 12.4 %

Table 3: Average compression ratios for SPliT-2,
Razor, Dcomp-5 (SPliT-5 without shadow encod-
ing), SPliT-5, and Topological Transformation on all
our data sets

We now focus on SPliT-2 which achieves less compres-
sion than SPliT-5 but which can be more easily deployed
than SPliT-5 since SPliT-2 requires only two TCAM chips.
We compare SPliT-2 to TCAM Razor to learn how much
we gain by going from one TCAM lookup to two TCAM
lookups. TCAM Razor’s average compression ratio on RL
is twice the average compression ratio of SPliT-2 on RL
(31.3% versus 15.6%); thus, going from one TCAM chip to
two TCAM chips may result in a 50% reduction in total
TCAM space required. Furthermore, when we study the re-
sults for individual classifiers, we see that TCAM Razor is
unable to achieve any compression for 4 out of 40 classifiers
whereas SPliT-2 achieves some compression for all classifiers
in RL. This illustrates how even SPliT-2 is able to elimi-
nate some of the multiplicative effect that is unavoidable in
single-lookup schemes.

Finally, in comparing SPliT-2 to SPliT-5, we see the great-
est divergence in performance on the RLb data set where
each classifier has a direct expansion size of at least 5000
rules. The much better performance of SPliT-5 (3.7% av-
erage compression ratio) than SPliT-2 (28.3% average com-
pression ratio) suggests that full decomposition may be crit-
ical for the very large classifiers that need the most compres-
sion. Of course, it is important to note that RLb has only 6
classifiers, so further testing is required before we can make
any final conclusions.

7. PERFORMANCE MODELING
We now assess how TCAM SPliT affects the power con-

sumption, latency, and throughput of the resulting packet
classifiers. We asses both SPliT-2 and SPliT-5. We use
direct range expansion as our baseline. For data, we use
our real-world and synthetic classifier sets. However, these
packet classifiers are all very small, fitting on TCAM chips
that are much smaller than 1 Mbit. To extrapolate to larger
classifiers, we analyze hypothetical classifiers whose direct
range expansion fits precisely within commercial TCAM chips:
specifically 1, 2, 4.5, 9, 18, 36, and 72 Mbits. We further as-
sume that when SPliT-2 and SPliT-5 are applied to these hy-
pothetical classifiers, we achieve theRL average compression
ratios of 15.6% and 6.4%, respectively. Note that we do not
know how the bits will be divided between the two stages.
Thus, we pessimistically assume that the size of the TCAM
table in each stage is 15.6% and 6.4% of the size of the direct
range expansion classifier resulting in a compression ratio of
only 31.2% and 32% for SPliT-2 and SPliT-5, respectively.
We use these hypothetical classifiers rather than construct
large synthetic classifiers because it is difficult to construct
realistic large synthetic classifiers. We assume that each
compressed classifier fits exactly within a given TCAM chip;

208

Power per packet Latency per packet Throughput
(a) (b) (c)

Figure 8: Power, latency, and throughput for SPliT-2 and SPliT-2 by size for 0.18 μm technology with 16
banks and 4 row dividers

that is, there are no unused bits. Finally, we use Agrawal
and Sherwood’s power, latency, and throughput models for
TCAM chips [1] to estimate the power consumption, latency,
and throughput of the resulting packet classifiers. Their
models are, to our best knowledge, the only publicly avail-
able models. In summary, our performance modeling re-
sults imply that TCAM SPliT significantly improves power
consumption and throughput with only a modest latency
penalty.

7.1 Power
Let P(A(C)) represent the nanojoules consumed to clas-

sify one packet on a TCAM with size equal to the number
of rules in A(C). For SPliT-2 and SPliT-5, this includes
the power consumed by all stages of the pipeline. For one
classifier C, we define the power ratio of algorithm A as

P(A(C))
P(Direct(C))

. For a set of classifiers S, we define the average

power ratio of algorithm A over S to be
ΣC∈S

P(A(C))
P(Direct(C))

|S| .

Figure 8 (a) shows the energy consumed per packet clas-
sified as a function of the direct encoding packet classifier
size. Table 4 shows the average power ratios for SPliT-2
and SPliT-5 on RL, RLU , SY N , SY NU , and our hypo-
thetical classifiers. Although SPliT-2 and SPliT-5 use two
and five TCAM chips, respectively, and each chip runs at
a higher frequency than the single TCAM chip in single-
lookup schemes, SPliT-2 and SPliT-5 still achieve significant
power savings because of their huge space savings. SPliT-2
and SPliT-5 reduce energy consumption per lookup by at
least 36.5% and 42.9%, respectively, on all data sets. On
our extrapolated data, the energy savings of SPliT-2 and
SPliT-5 continue to grow as classifier size increases. For
the largest classifier size we consider, SPliT-2 and SPliT-
5 achieve power ratios of 17.5% and 10.4%, respectively.
There are two reasons why SPliT-2 and SPliT-5 work so
well. TCAM chip energy consumption is reduced if we re-
duce the number of rows in a TCAM chip and if we reduce
the width of a TCAM chip. SPliT-2 reduces the width of a
TCAM chip by a factor of 2 (from 160 to 80),and it also re-
duces the number of rows by a significant amount. SPliT-5
reduces the width of a TCAM chip by a factor of 4 (from 160
to 40) in most cases, and it reduces the number of rows by
even more than SPliT-2. Even more energy could be saved
if we ran the smaller TCAM chips at the same frequency we
ran a larger single-lookup TCAM chip.

Power Latency Throughput
SPliT2 SPliT5 SPliT2 SPliT5 SPliT2 SPliT5

RL 60.1% 55.3% 121.8% 205.3% 161.2% 240.1%
RLU 64.5% 57.1% 131.3% 219.5% 148.4% 211.7%
SY N 55.1% 51.7% 113.4% 195.6% 176.6% 258.1%
SY NU 59.9% 53.9% 123.7% 210.7% 151.3% 196.3%
1Mb 43.1% 39.3% 120.0% 200.0% 166.7% 250.0%
2Mb 34.9% 30.0% 133.3% 250.0% 150.0% 200.0%
4.5Mb 27.9% 22.1% 142.9% 285.7% 140.0% 175.0%
9Mb 23.0% 16.5% 148.8% 310.0% 134.4% 161.3%
18Mb 20.0% 13.1% 118.5% 253.9% 168.8% 196.9%
36Mb 18.3% 11.4% 76.1% 166.4% 262.9% 300.5%
72Mb 17.5% 10.4% 38.2% 84.9% 523.8% 589.2%

Table 4: Average power, latency, and throughput
ratios for SPliT-2 and SPliT-5

7.2 Latency
For single lookup schemes, let L(A(C)) represent the num-

ber of nanoseconds required to perform one search on a
TCAM with size equal to the number of rules in A(C). For
SPliT-2 and SPliT-5, let L(A(C)) represent the number of
nanoseconds required to perform all searches in the lookup
pipeline. For one classifier C, we define the latency ratio

of algorithm A as L(A(C))
L(Direct(C))

. For a set of classifiers S, we

define the average latency ratio for algorithm A over S to

be
ΣC∈S

L(A(C))
L(Direct(C))

|S| .

Figure 8 (b) shows the latency per packet classified as a
function of the direct encoding packet classifier size. Table 4
shows the average latency ratios for SPliT-2 and SPliT-5 on
RL, RLU , SY N , SY NU , and our hypothetical classifiers.

Although SPliT-2 and SPliT-5 need to perform two and
five TCAM lookups, respectively, for each packet, SPliT-2
and SPliT-5 increase latency per packet by at most 48.8%
and 210%, respectively. The reason the increase in latency
is not 100% and 400%, respectively, in all cases is that
the lookup time of a TCAM chip increases as its size in-
creases. Since SPliT-2 and SPliT-5 can use smaller TCAM
chips, their latency is significantly less than double or quin-
tuple that of single lookup direct expansion. For the largest
modeled classifier, the improvement in lookup time hits a
point on the curve where SPliT-2 and SPliT-5 actually have
smaller latencies than that of single lookup direct expan-
sion. Furthermore, given that packet classification systems
typically measure speed in terms of throughput rather than
latency, the small latency penalty of SPliT-2 and SPliT-5
may be relatively unimportant.

209

7.3 Throughput
For single lookup schemes, let T(A(C)) represent the num-

ber of lookups per second for a TCAM of size A(C). For
SPliT-2 and SPliT-5, let T(A(C)) be the minimum through-
put of any stage in the lookup pipeline. For one classifier C,

we define the throughput ratio of algorithm A as T(A(C))
T(Direct(C))

.

For a set of classifiers S, we define the average throughput

ratio for algorithm A over S to be
ΣC∈S

T(A(C))
T(Direct(C))

|S| .

Figure 8 (c) shows the throughput as a function of the
direct encoding packet classifier size. Table 4 shows the
average throughput ratios for SPliT-2 on RL, RLU , SY N ,
SY NU , and our hypothetical classifiers.
SPliT-2 and SPliT-5 significantly increase throughput for

classifiers of all sizes. The typical improvement for SPliT-2
is in the 35% to 70% range. For SPliT-5, this improvement
range increases to 61% to 150%. For an extremely large
classifier whose direct expansion requires a 72Mbit TCAM,
SPliT-2 and SPliT-5 improve throughput by 423.8% and
489.2%, respectively.

8. CONCLUSIONS
In this paper, we propose a new approach to designing

TCAM-based packet processing engines. Instead of using a
single large TCAM chip, TCAM SPliT uses 2 ≤ k ≤ d small
TCAM chips to classify packets in a pipeline fashion. TCAM
SPliT achieves significant TCAM space reduction because it
effectively mitigates the multiplicative effect among multiple
dimensions in a classifier. As smaller TCAM chips consume
less power and support faster lookups, TCAM SPliT also
achieves significant power savings and higher throughput.
With full SPliT where k = 5, we achieve significantly better
results than any previously proposed TCAM-based packet
classification scheme. With minimal SPliT where k = 2, we
still achieve impressive compression.

9. REFERENCES
[1] B. Agrawal and T. Sherwood. Modeling tcam power

for next generation network devices. In Proc. IEEE
ISPASS, 2006.

[2] D. A. Applegate, G. Calinescu, D. S. Johnson,
H. Karloff, K. Ligett, and J. Wang. Compressing
rectilinear pictures and minimizing access control lists.
In Proc. ACM-SIAM SODA, January 2007.

[3] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: Is there an alternative
to CAMs? In Proc. IEEE INFOCOM, 2003.

[4] A. Bremler-Barr and D. Hendler. Space-efficient
TCAM-based classification using gray coding. In Proc.
INFOCOM, May 2007.

[5] H. Che, Z. Wang, K. Zheng, and B. Liu. DRES:
Dynamic range encoding scheme for tcam
coprocessors. IEEE TC, 57(7):902–915, 2008.

[6] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and
A. Shukla. Packet classifiers in ternary CAMs can be
smaller. In Proc. ACM Sigmetrics, 2006.

[7] P. Gupta and N. McKeown. Packet classification on
multiple fields. In Proc. ACM SIGCOMM, 1999.

[8] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
Proc. SIGCOMM, 2006.

[9] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with ternary CAMs. In Proc. ACM
SIGCOMM, August 2005.

[10] C. Lambiri. Senior staff architect IDT, private
communication. 2008.

[11] P. C. Lekkas. Network Processors - Architectures,
Protocols, and Platforms. McGraw-Hill, 2003.

[12] A. X. Liu and M. G. Gouda. Diverse firewall design.
IEEE TPDS, 19(8), 2008.

[13] A. X. Liu, C. R. Meiners, and E. Torng. TCAM
Razor: A systematic approach towards minimizing
packet classifiers in TCAMs. IEEE/ACM ToN,
18:490–500, 2010.

[14] A. X. Liu, C. R. Meiners, and Y. Zhou. All-match
based complete redundancy removal for packet
classifiers in TCAMs. In In Proc. IEEE Infocom, April
2008.

[15] H. Liu. Efficient mapping of range classifier into
Ternary-CAM. In Proc. Hot Interconnects, pages 95–
100, 2002.

[16] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving:
A non-prefix approach to compressing packet
classifiers in TCAMs. In In Proc. IEEE ICNP,
October 2009.

[17] C. R. Meiners, A. X. Liu, and E. Torng. Topological
transformation approaches to optimizing tcam-based
packet processing systems. In Proc. ACM
SIGMETRICS, June 2009.

[18] C. R. Meiners, J. Patel, E. Norige, E. Torng, and
A. X. Liu. Fast regular expression matching using
small TCAMs for network intrusion detection and
prevention systems. In USENIX Security, 2010.

[19] D. Pao, P. Zhou, B. Liu, and X. Zhang. Enhanced
prefix inclusion coding filter-encoding algorithm for
packet classification with ternary content addressable
memory. Computers & Digital Techniques, IET,
1:572–580, April 2007.

[20] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting.
In Proc. ACM SIGCOMM, 2003.

[21] S. Suri, T. Sandholm, and P. Warkhede. Compressing
two-dimensional routing tables. Algorithmica,
35:287–300, 2003.

[22] D. Taylor and J. Turner. Scalable packet classification
using distributed crossproducting of field labels. In
Proc. IEEE INFOCOM, 2005.

[23] D. E. Taylor. Survey & taxonomy of packet
classification techniques. ACM Computing Surveys,
37(3):238–275, 2005.

[24] D. E. Taylor and J. S. Turner. Classbench: A packet
classification benchmark. In Proc. IEEE Infocom,
2005.

[25] J. van Lunteren and T. Engbersen. Fast and scalable
packet classification. IEEE Journals on Selected Areas
in Communications, 21(4):560– 571, 2003.

210

