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sink cannot verify whether a sensor collected data at a time-slot.
The case that a sensor did not submit any data at time-slot £ and
the case that the storage node discards all the data that the sensor
collected at time-slot 7 are not distinguishable for the sink.

We address the above challenge by sensors reporting their idle
period to storage node each time when they submit data after an
idle period or when the idle period is longer than a threshold.
Storage nodes can use such idle period reported by sensors to
prove to the sink that a sensor did not submit any data at any
time-slot in that idle period. Next, we discuss the operations
carried on sensors, storage nodes, and the sink.

Sensors: An idle period for a sensor is a time-slot interval
[t1, 2], which indicates that the sensor has no data to submit
from ¢, to -, including ¢; and #5. Let v be the threshold of a
sensor being idle without reporting to a storage node. Suppose
the last time that sensor s; submitted data or reported idle period
is time-slot¢; — 1. Atany time-slot¢ > £, s; acts based on three
cases.

1) ¢ = t1: In this case, if s; has data to submit, then it just

submits the data; otherwise, it takes no action.

2)t1 < t < v+t — 1: In this case, if s; has data to
submit, then it submits data along with encrypted idle pe-
riod [t1,t — 1]z, ; otherwise, it takes no action. We call
[t1,% — 1]&, an idle proof.

3) t = v + t; — 1: In this case, if s; has data to submit,
then it submits data along with the idle proof [¢1,¢ — 1]z,
otherwise, it submits the idle proof [#1, #]; .

Fig. 11 illustrates idle periods for sensor s;, where each unit
in the time axis is a time-slot, a gray unit denotes that s; has data
to submit, and a blank unit denotes that s; has no data to submit.
According to case 2, at time-slot £» + 1, s; submits data along
with the idle proof [¢1, t2]k, . According to case 3, at time-slot ¢,
$; submits the idle proof [t3, %], -

Storage Nodes: When a storage node receives a query
{t,G([o,b])} from the sink, it first checks whether ¢; has
submitted data at time-slot £. If s; has, then the storage node
sends the query result as discussed in Section IV. Otherwise,
the storage node checks whether s; has submitted an idle proof
for an idle period containing time-slot ¢. If true, then it sends
the idle proofto the sink as VO. Otherwise, it replies to the sink
saying that it does not have the idle proof containing time-slot ¢
at this moment, but once the right idle proof is received, it will
forward to the sink. The maximum number of time-slots that
the sink may need to wait for the right idle proofis v — 1. Here,
~ is a system parameter trading off efficiency and the amount of
time that the sink may have to wait for verifying data integrity.
Smaller v favors the sink for integrity verification, and larger v
favors sensors for power saving because of less communication
cost.

Sink: Changes on the sink side are minimal. In the case that
VO lacks the idle proof for verifying the integrity of QR, it
will defer the verification for at most v — 1 time-slots, during

which benign storage nodes are guaranteed to send the needed
idle proof.

X. COMPLEXITY AND SECURITY ANALYSIS

A. Complexity Analysis

Assume that a sensor collects n z-dimensional data items in
a time-slot, each attribute of a data item is a w,-bit number, and
the HMAC result of each numericalized prefix is a wy number.
The computation cost, communication cost, and storage space
of SafeQ are described in Table II. Note that the communica-
tion cost denotes the number of bytes sent for each submission
or query, and the storage space denotes the number of bytes
stored in a storage node for each submission. Furthermore, note
that whether sensor nodes report to storage nodes periodically
or upon some events has no impact on these costs of one time
sending of n data items.

B. Privacy Analysis

In a SafeQ protected two-tiered sensor network, compro-
mising a storage node does not allow the attacker to obtain the
actual values of sensor collected data and sink issued queries.
The correctness of this claim is based on the fact that the
hash functions and encryption algorithms used in SafeQ are
secure. In the submission protocol, a storage node only receives
encrypted data items and the secure hash values of prefixes
converted from the data items. Without knowing the keys used
in the encryption and secure hashing, it is computationally
infeasible to compute the actual values of sensor collected data
and the corresponding prefixes. In the query protocol, a storage
node only receives the secure hash values of prefixes converted
from a range query. Without knowing the key used in the secure
hashing, it is computationally infeasible to compute the actual
values of sink issued queries.

Next, we analyze information leaking if HMAC,() does
not satisfy the one-wayness property. More formally, given ¥,
where y = HMAC,(x) and « is anumericalized prefix, suppose
that a storage node takes O(7') steps to compute . Recall that
the number of HMAC hashes sent from a sensor is O{w,zn).
To reveal a data item d;, the storage node needs to reveal all the
numericalized prefixes in HMAC (N (S([d;_1,4d,]))). Thus,
to reveal n data items, the storage node would take O(w,znT)
steps. Here, T = 21%® for HMAC.

Note that if a storage node and a sensor are both compro-
mised, the storage node may reveal the sensor collected data
and sink issued queries by employing brute-force attacks.
In this case, the storage node knows the shared secret key g
for the HMAC, function. Due to the one-wayness property
of HMAC,, the storage node cannot reveal = directly using
HMAC,(z) and g. However, it can compute the HMAC,
results of the numericalized prefixes for all possible values in
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the data domain in a brute-force manner, and then compare
the HMAC, results with the received data and queries. Based
on the comparison, the storage node can reveal the sensor
collected data and sink issued queries. However, in practice,
this computational cost could be prohibitive for a large data
domain.

C. Integrity Analysis

For our scheme using Merkle hash trees, the correctness of
this claim is based on the property that any change of leaf nodes
in a Merkle hash tree will change the root value. Recall that the
leaf nodes in a Merkle hash tree are sorted according to their
values. In a query response, the left bound of the query result
(if it exists), the query result, and the right bound of the query
result (if it exists) must be consecutive leaf nodes in the Merkle
hash tree. If the storage node includes forged data in the query
result or excludes a legitimate data item from the query result,
the root value computed at the sink will be different from the
root value computed at the corresponding sensor.

For our scheme using neighborhood chains, the correctness
of this claim is based on the following three properties that QR
and VO should satisfy for a query. First, items in QRUVO form
a chain. Excluding any item in the middle or changing any item
violates the chaining property. Second, the first item in QRUVO
contains the value of its left neighbor, which should be out of the
range query on the smaller end. Third, the last item in QRUVO
contains the value of its right neighbor, which should be out of
the range query on the larger end.

XI. EXPERIMENTAL RESULTS

A. Evaluation Setup

We implemented both SafeQ and the S&L scheme using
TOSSIM [36], a widely used wireless sensor network simulator.
We measured the efficiency of SafeQ and the S&L scheme on
one-, two-, and three-dimensional data. For better comparison,
we conducted our experiments on the same data set that S&L
used in their experiment [7]. The data set was chosen from a
large real data set from Intel Lab [10], and it consists of the
temperature, humidity, and voltage data collected by 44 nodes
during March 1-10, 2004. Each data attribute follows Gaussian
distribution. Note that S&L only conducted experiments on
the temperature data, while we experimented with both SafeQ
and S&L schemes on one-dimensional data (of temperature),
two-dimensional data (of temperature and humidity), and
three-dimensional data (of temperature, humidity, and voltage).
As in [7], we equally divided 44 nodes into four groups and
deployed a storage node for each group. Fig. 12 shows the net-
work topology. The locations of sensors can be found in [10].

In implementing SafeQ, we used HMAC-MDS5 [32] with
128-bit keys as the hash function for hashing prefix numbers.
We used the DES encryption algorithm in implementing both
SafeQ and the S&L scheme. In implementing our Bloom filter
optimization technique, we chose the number of hash functions
tobe 4 (i.e., k = 4), which guarantees that the false positive rate
induced by the Bloom filter is less than 1%. In implementing the
S&L scheme, we used the parameter values (i.e., VAR, = 0.4
and EN,, = 1), which are corresponding to the minimum false
positives of query results in their experiments, for computing
optimal bucket partitions as in [7], and we used HMAC-MDS5
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Fig. 12. Network topology in the experiment.

with 128-bit keys as the hash function for computing encoding
number. For multidimensional data, we used their optimal
bucket partition algorithm to partition multidimensional data
along each dimension. In our experiments, we experimented
with different sizes of time-slots ranging from 10 to 80 min.
For each time-slot, we generated 1000 random range queries
in the form of ([al, ], [a?, %], [a®, b%]), where al,b! are two
random values of temperature, a2, b? are two random values of
humidity, and a®, 5% are two random values of voltage.

B. Evaluation Results

The experimental results from our side-by-side comparison
show that SafeQ significantly outperforms the S&L scheme for
multidimensional data in terms of power and space consump-
tion. For the two integrity-preserving schemes, the neighbor-
hood-chaining technique is better than Merkle hash tree tech-
nique in terms of both power and space consumption. The ra-
tionale for us to include the Merkle hash-tree-based scheme is
that Merkle hash trees are the typical approach to achieving in-
tegrity. We use SafeQ-MHT+ and SafeQ-MHT to denote our
schemes using Merkle hash trees with and without Bloom fil-
ters, respectively, and we use SafeQ-NC+ and SafeQ-NC to de-
note our schemes using neighborhood chains with and without
Bloom filters, respectively.

Fig. 13(a)-(c) shows the average power consumption of
sensors for three-, two-, and one-dimensional data, respec-
tively, versus different sizes of time-slots. Fig. 14(a)—(c) shows
the average power consumption of storage nodes for three-,
two-, and one-dimensional data, respectively, versus different
sizes of time-slots. We observe that the power consumption
of both sensors and storage nodes grows linearly with the
number of data items, which confirms our complexity anal-
ysis in Section X-A. Note that the number of collected data
items is in direct proportion to the size of time-slots. For
power consumption, in comparison with the S&L scheme,
our experimental results show that for three-dimensional data,
SafeQ-NC+ consumes 184.9 times less power for sensors
and 76.8 times less power for storage nodes; SafeQ-MHT+
consumes 171.4 times less power for sensors and 46.9 times
less power for storage nodes; SafeQ-NC consumes 59.2 times
less power for sensors and 76.8 times less power for storage
nodes; and SafeQ-MHT consumes 57.9 times less power for
sensors and 46.9 times less power for storage nodes. For
two-dimensional data, SafeQ-NC+ consumes 10.3 times less
power for sensors and 9.0 times less power for storage nodes;
SafeQ-MHT+ consumes 9.5 times less power for sensors and
5.4 times less power for storage nodes; SafeQ-NC consumes
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Fig. 14. Average power consumption per query response for a storage node. (a) Three-dimensional data. (b) Two-dimensional data. (c) One-dimensional data.
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2.7 times less power for sensors and 9.0 times less power for
storage nodes; and SafeQ-MHT consumes 2.6 times less power
for sensors and 5.4 times less power for storage nodes. Our
experimental results conform with the theoretical analysis that
the power consumption in S&L scheme grows exponentially
with the number of dimensions, whereas in SafeQ it grows
linearly with the number of dimensions times the number of
data items.

Figs. 13(d) and 14(d) show the average power consumption
for a 10-min slot for a sensor and a storage node, respectively,
versus the number of dimensions of the data. We observe that
there are almost linear correlations between the average power
consumption for both sensors and storage nodes and the number
of dimensions of the data, which also confirms our complexity
analysis in Section X-A.

Our experimental results also show that SafeQ is comparable
to the S&L scheme for one-dimensional data in terms of power
and space consumption. For power consumption, SafeQ-NC+
consumes about the same power for sensors and 0.7 times less
power for storage nodes; SafeQ-MHT+ consumes about the
same power for sensors and 0.3 times less power for storage
nodes; SafeQ-NC consumes 1.0 times more power for sensors
and 0.7 times less power for storage nodes; and SafeQ-MHT
consumes 1.0 times more power for sensors and 0.3 times less
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power for storage nodes. For space consumption on storage
nodes, SafeQ-NC+ and SafeQ-MHT+ consume about the same
space, and SafeQ-NC and SafeQ-MHT consume about 1.0
times more space.

Fig. 15(a)—(c) shows the average space consumption of
storage nodes for three-, two-, and one-dimensional data,
respectively. For space consumption on storage nodes, in com-
parison to the S&L scheme, our experimental results show that
for three-dimensional data, SafeQ-NC+ consumes 182.4 times
less space; SafeQ-MHT+ consumes 169.1 times less space;
SafeQ-NC consumes 58.5 times less space; and SafeQ-MHT
consumes 57.2 times less space. For two-dimensional data,
SafeQ-NC+ consumes 10.2 times less space; SafeQ-MHT+
consumes 9.4 times less space; SafeQ-NC consumes 2.7 times
less space; and SafeQ-MHT consumes 2.6 times less space.
The results conform with the theoretical analysis that the space
consumption in the S&L scheme grows exponentially with the
number of dimensions, whereas in SafeQ it grows linearly with
the number of dimensions times the number of data items.

Fig. 15 shows the average space consumption of storage
nodes for each data item versus the number of dimensions of the
data item. For each three-dimensional data item, S&L consumes
about over 10* bytes, while SafeQ-NC+ and SafeQ-MHT+
consume only 40 bytes.
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XII. CONCLUSION

We make three key contributions in this paper. First, we pro-
pose SafeQ, a novel and efficient protocol for handling range
queries in two-tiered sensor networks in a privacy- and in-
tegrity-preserving fashion. SafeQ uses the techniques of prefix
membership verification, Merkle hash trees, and neighborhood
chaining. In terms of security, SafeQ significantly strengthens
the security of two-tiered sensor networks. Unlike prior art,
SafeQ prevents a compromised storage node from obtaining a
reasonable estimation on the actual values of sensor collected
data items and sink issued queries. In terms of efficiency, our
results show that SafeQ significantly outperforms prior art for
multidimensional data in terms of both power consumption and
storage space. Second, we propose an optimization technique
using Bloom filters to significantly reduce the communication
cost between sensors and storage nodes. Third, we propose a
solution to adapt SafeQ for event-driven sensor networks.
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