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Abstract

Regular expression (RE) matching is a core component

of deep packet inspection in modern networking and

security devices. In this paper, we propose the first

hardware-based RE matching approach that uses Ternary

Content Addressable Memories (TCAMs), which are

off-the-shelf chips and have been widely deployed in

modern networking devices for packet classification. We

propose three novel techniques to reduce TCAM space

and improve RE matching speed: transition sharing, ta-

ble consolidation, and variable striding. We tested our

techniques on 8 real-world RE sets, and our results show

that small TCAMs can be used to store large DFAs and

achieve potentially high RE matching throughtput. For

space, we were able to store each of the corresponding 8

DFAs with as many as 25,000 states in a 0.59Mb TCAM

chip where the number of TCAM bits required per DFA

state were 12, 12, 12, 13, 14, 26, 28, and 42. Using

a different TCAM encoding scheme that facilitates pro-

cessing multiple characters per transition, we were able

to achieve potential RE matching throughputs of between

10 and 19 Gbps for each of the 8 DFAs using only a sin-

gle 2.36 Mb TCAM chip.

1 Introduction

1.1 Background and Problem Statement

Deep packet inspection is a key part of many networking

devices on the Internet such as Network Intrusion De-

tection (or Prevention) Systems (NIDS/NIPS), firewalls,

and layer 7 switches. In the past, deep packet inspec-

tion typically used string matching as a core operator,

namely examining whether a packet’s payload matches

any of a set of predefined strings. Today, deep packet in-

spection typically uses regular expression (RE) matching

as a core operator, namely examining whether a packet’s

payload matches any of a set of predefined regular ex-

pressions, because REs are fundamentally more expres-

sive, efficient, and flexible in specifying attack signatures

[27]. Most open source and commercial deep packet in-

spection engines such as Snort, Bro, TippingPoint X505,

and many Cisco networking appliances use RE match-

ing. Likewise, some operating systems such as Cisco

IOS and Linux have built RE matching into their layer 7

filtering functions. As both traffic rates and signature set

sizes are rapidly growing over time, fast and scalable RE

matching is now a core network security issue.

RE matching algorithms are typically based on the De-

terministic Finite Automata (DFA) representation of reg-

ular expressions. A DFA is a 5-tuple (Q,Σ, δ, q0, A),
where Q is a set of states, Σ is an alphabet, δ : Σ×Q →
Q is the transition function, q0 is the start state, and

A ⊆ Q is a set of accepting states. Any set of regu-

lar expressions can be converted into an equivalent DFA

with the minimum number of states. The fundamental

issue with DFA-based algorithms is the large amount of

memory required to store transition table δ. We have to

store δ(q, a) = p for each state q and character a.

Prior RE matching algorithms are either software-

based [4, 6, 7, 12, 16, 18, 19] or FPGA-based [5, 7, 13, 14,

22, 24, 29]. Software-based solutions have to be imple-

mented in customized ASIC chips to achieve high-speed,

the limitations of which include high deployment cost

and being hard-wired to a specific solution and thus lim-

ited ability to adapt to new RE matching solutions. Al-

though FPGA-based solutions can be modified, resynthe-

sizing and updating FPGA circuitry in a deployed system

to handle regular expression updates is slow and diffi-

cult; this makes FPGA-based solutions difficult to be de-

ployed in many networking devices (such as NIDS/NIPS

and firewalls) where the regular expressions need to be

updated frequently [18].

1.2 Our Approach

To address the limitations of prior art on high-speed RE

matching, we propose the first Ternary Content Address-

able Memory (TCAM) based RE matching solution. We
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use a TCAM and its associated SRAM to encode the

transitions of the DFA built from an RE set where one

TCAM entry might encode multiple DFA transitions.

TCAM entries and lookup keys are encoded in ternary

as 0’s, 1’s, and *’s where *’s stand for either 0 or 1.

A lookup key matches a TCAM entry if and only if

the corresponding 0’s and 1’s match; for example, key

0001101111 matches entry 000110****. TCAM circuits

compare a lookup key with all its occupied entries in par-

allel and return the index (or sometimes the content) of

the first address for the content that the key matches; this

address is then used to retrieve the corresponding deci-

sion in SRAM.

Given an RE set, we first construct an equivalent min-

imum state DFA [15]. Second, we build a two column

TCAM lookup table where each column encodes one of

the two inputs to δ: the source state ID and the input char-

acter. Third, for each TCAM entry, we store the destina-

tion state ID in the same entry of the associated SRAM.

Fig. 1 shows an example DFA, its TCAM lookup table,

and its SRAM decision table. We illustrate how this DFA

processes the input stream “01101111, 01100011”. We

form a TCAM lookup key by appending the current input

character to the current source state ID; in this example,

we append the first input character “01101111” to “00”,

the ID of the initial state s0, to form “0001101111”. The

first matching entry is the second TCAM entry, so “01”,

the destination state ID stored in the second SRAM en-

try is returned. We form the next TCAM lookup key

“0101100011” by appending the second input character

“011000011” to this returned state ID “01”, and the pro-

cess repeats.

s0

s1

s2

[a,o]

else

else

b

[b,c]
a,[c,o]

a,[d,o]

Src ID Input

00 0110 0000

00 0110 ****

00 **** ****

01 0110 0000

01 0110 0010

01 0110 ****

01 **** ****

10 0110 0000

10 0110 001*

10 0110 ****

10 **** ****

TCAM
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s1
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Dst ID

00 s0

01 s1

00 s0

00 s0

01 s1
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00 s0

00 s0

01 s1

10 s2

00 s0

SRAM

Input stream Src ID Input

Figure 1: A DFA with its TCAM table

Advantages of TCAM-based RE Matching There

are three key reasons why TCAM-based RE matching

works well. First, a small TCAM is capable of encoding

a large DFA with carefully designed algorithms lever-

aging the ternary nature and first-match semantics of

TCAMs. Our experimental results show that each of the

DFAs built from 8 real-world RE sets with as many as

25,000 states, 4 of which were obtained from the authors

of [6], can be stored in a 0.59Mb TCAM chip. The two

DFAs that correspond to primarily string matching RE

sets require 28 and 42 TCAM bits per DFA state; 5 of

the remaining 6 DFAs which have a sizeable number of

‘.*’ patterns require 12 to 14 TCAM bits per DFA state

whereas the 6th DFA requires 26 TCAM bits per DFA

state. Second, TCAMs facilitate high-speed RE matching

because TCAMs are essentially high-performance paral-

lel lookup systems: any lookup takes constant time (i.e.,

a few CPU cycles) regardless of the number of occupied

entries. Using Agrawal and Sherwood’s TCAM model

[1] and the resulting required TCAM sizes for the 8 RE

sets, we show that it may be possible to achieve through-

puts ranging between 5.36 and 18.6 Gbps using only a

single 2.36 Mb TCAM chip. Third, because TCAMs are

off-the-shelf chips that are widely deployed in modern

networking devices, it should be easy to design network-

ing devices that include our TCAM based RE matching

solution. It may even be possible to immediately deploy

our solution on some existing devices.

Technical Challenges There are two key technical

challenges in TCAM-based RE matching. The first is en-

coding a large DFA in a small TCAM. Directly encoding

a DFA in a TCAM using one TCAM entry per transi-

tion will lead to a prohibitive amount of TCAM space.

For example, consider a DFA with 25000 states that con-

sumes one 8 bit character per transition. We would need

a total of 140.38Mb (= 25000×28×(8+⌈log 25000⌉)).
This is infeasible given the largest available TCAM chip

has a capacity of only 72 Mb. To address this challenge,

we use two techniques that minimize the TCAM space

for storing a DFA: transition sharing and table consol-

idation. The second challenge is improving RE match-

ing speed and thus throughput. One way to improve the

throughput by up to a factor of k is to use k-stride DFAs

that consume k input characters per transition. However,

this leads to an exponential increase in both state and

transition spaces. To avoid this space explosion, we use

the novel idea of variable striding.

Key Idea 1 - Transition Sharing The basic idea is to

combine multiple transitions into one TCAM entry by

exploiting two properties of DFA transitions: (1) char-

acter redundancy where many transitions share the same

source state and destination state and differ only in their

character label, and (2) state redundancy where many

transitions share the same character label and destina-

tion state and differ only in their source state. One rea-

son for the pervasive character and state redundancy in

DFAs constructed from real-world RE sets is that most

states have most of their outgoing transitions going to

some common “failure” state; such transitions are often

called default transitions. The low entropy of these DFAs
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opens optimization opportunities. We exploit character

redundancy by character bundling (i.e., input character

sharing) and state redundancy by shadow encoding (i.e.,

source state sharing). In character bundling, we use a

ternary encoding of the input character field to repre-

sent multiple characters and thus multiple transitions that

share the same source and destination states. In shadow

encoding, we use a ternary encoding for the source state

ID to represent multiple source states and thus multiple

transitions that share the same label and destination state.

Key Idea 2 - Table Consolidation The basic idea is

to merge multiple transition tables into one transition

table using the observation that some transition tables

share similar structures (e.g., common entries) even if

they have different decisions. This shared structure can

be exploited by consolidating similar transition tables

into one consolidated transition table. When we con-

solidate k TCAM lookup tables into one consolidated

TCAM lookup table, we store k decisions in the asso-

ciated SRAM decision table.

Key Idea 3 - Variable Striding The basic idea is to

store transitions with a variety of strides in the TCAM so

that we increase the average number of characters con-

sumed per transition while ensuring all the transitions fit

within the allocated TCAM space. This idea is based on

two key observations. First, for many states, we can cap-

ture many but not all k-stride transitions using relatively

few TCAM entries whereas capturing all k-stride tran-

sitions requires prohibitively many TCAM entries. Sec-

ond, with TCAMs, we can store transitions with different

strides in the same TCAM lookup table.

The rest of this paper proceeds as follows. We review

related work in Section 2. In Sections 3, 4, and 5, we

describe transition sharing, table consolidation, and vari-

able striding, respectively. We present implementation

issues, experimental results, and conclusions in Sections

6, 7, and 8, respectively.

2 Related Work

In the past, deep packet inspection typically used string

matching (often called pattern matching) as a core op-

erator; string matching solutions have been extensively

studied [2, 3, 28, 30, 32, 33, 35]). TCAM-based solutions

have been proposed for string matching, but they do not

generalize to RE matching because they only deal with

independent strings [3, 30, 35].

Today deep packet inspection often uses RE match-

ing as a core operator because strings are no longer ad-

equate to precisely describe attack signatures [25, 27].

Prior work on RE matching falls into two categories:

software-based and FPGA-based. Prior software-based

RE matching solutions focus on either reducing mem-

ory by minimizing the number of transitions/states or

improving speed by increasing the number of characters

per lookup. Such solutions can be implemented on gen-

eral purpose processors, but customized ASIC chip im-

plementations are needed for high speed performance.

For transition minimization, two basic approaches have

been proposed: alphabet encoding that exploits charac-

ter redundancy [6, 7, 12, 16] and default transitions that

exploit state redundancy [4, 6, 18, 19]. Previous alphabet

encoding approaches cannot fully exploit local charac-

ter redundancy specific to each state. Most use a sin-

gle alphabet encoding table that can only exploit global

character redundancy that applies to every state. Kong

et al. proposed using 8 alphabet encoding tables by par-

titioning the DFA states into 8 groups with each group

having its own alphabet encoding table [16]. Our work

improves upon previous alphabet encoding techniques

because we can exploit local character redundancy spe-

cific to each state. Our work improves upon the default

transition work because we do not need to worry about

the number of default transitions that a lookup may go

through because TCAMs allow us to traverse an arbitrar-

ily long default transition path in a single lookup. Some

transition sharing ideas have been used in some TCAM-

based string matching solutions for Aho-Corasick-based

DFAs [3, 11]. However, these ideas do not easily ex-

tend to DFAs generated by general RE sets, and our

techniques produce at least as much transition sharing

when restricted to string matching DFAs. For state min-

imization, two fundamental approaches have been pro-

posed. One approach is to first partition REs into multi-

ple groups and build a DFA from each group; at run time,

packet payload needs to be scanned by multiple DFAs

[5, 26, 34]. This approach is orthogonal to our work and

can be used in combination with our techniques. In par-

ticular, because our techniques achieve greater compres-

sion of DFAs than previous software-based techniques,

less partitioning of REs will be required. The other ap-

proach is to use scratch memory to store variables that

track the traversal history and avoid some duplication of

states [8,17,25]. The benefit of state reduction for scratch

memory-based FAs does not come for free. The size of

the required scratch memory may be significant, and the

time required to update the scratch memory after each

transition may be significant. This approach is orthogo-

nal to our approach. While we have only applyied our

techniques to DFAs in this initial study of TCAM-based

RE matching, our techniques may work very well with

scratch memory-based automata.

Prior FPGA-based solutions exploit the parallel pro-

cessing capabilities of FPGA technology to implement

nondeterministic finite automata (NFA) [5, 7, 13, 14, 22,

24,29] or parallel DFAs [23]. While NFAs are more com-

pact than DFAs, they require more memory bandwidth
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to process each transition as an NFA may be in multiple

states whereas a DFA is always only in one state. Thus,

each character that is processed might be processed in

up to |Q| transition tables. Prior work has looked at

ways for finding good NFA representations of the REs

that limit the number of states that need to be processed

simultaneously. However, FPGA’s cannot be quickly re-

configured, and they have clock speeds that are slower

than ASIC chips.

There has been work [7, 12] on creating multi-stride

DFAs and NFAs. This work primarily applies to FPGA

NFA implementations since multiple character SRAM

based DFAs have only been evaluated for a small number

of REs. The ability to increase stride has been limited

by the constraint that all transitions must be increased

in stride; this leads to excessive memory explosion for

strides larger than 2. With variable striding, we increase

stride selectively on a state by state basis. Alicherry et al.

have explored variable striding for TCAM-based string

matching solutions [3] but not for DFAs that apply to ar-

bitrary RE sets.

3 Transition Sharing

The basic idea of transition sharing is to combine mul-

tiple transitions into a single TCAM entry. We pro-

pose two transition sharing ideas: character bundling and

shadow encoding. Character bundling exploits intra-state

optimization opportunities and minimizes TCAM tables

along the input character dimension. Shadow encoding

exploits inter-state optimization opportunities and mini-

mizes TCAM tables along the source state dimension.

3.1 Character Bundling

Character bundling exploits character redundancy by

combining multiple transitions from the same source

state to the same destination into one TCAM entry. Char-

acter bundling consists of four steps. (1) Assign each

state a unique ID of ⌈log |Q|⌉ bits. (2) For each state,

enumerate all 256 transition rules where for each rule,

the predicate is a transition’s label and the decision is the

destination state ID. (3) For each state, treating the 256

rules as a 1-dimensional packet classifier and leveraging

the ternary nature and first-match semantics of TCAMs,

we minimize the number of transitions using the op-

timal 1-dimensional TCAM minimization algorithm in

[20, 31]. (4) Concatenate the |Q| 1-dimensional minimal

prefix classifiers together by prepending each rule with

its source state ID. The resulting list can be viewed as a

2-dimensional classifier where the two fields are source

state ID and transition label and the decision is the des-

tination state ID. Fig. 1 shows an example DFA and its

TCAM lookup table built using character bundling. The

three chunks of TCAM entries encode the 256 transi-

tions for s0, s1, and s2, respectively. Without character

bundling, we would need 256× 3 entries.

3.2 Shadow Encoding

Whereas character bundling uses ternary codes in the in-

put character field to encode multiple input characters,

shadow encoding uses ternary codes in the source state

ID field to encode multiple source states.

3.2.1 Observations

We use our running example in Fig. 1 to illustrate shadow

encoding. We observe that all transitions with source

states s1 and s2 have the same destination state except

for the transitions on character c. Likewise, source state

s0 differs from source states s1 and s2 only in the char-

acter range [a, o]. This implies there is a lot of state re-

dundancy. The table in Fig. 2 shows how we can ex-

ploit state redundancy to further reduce required TCAM

space. First, since states s1 and s2 are more similar, we

give them the state IDs 00 and 01, respectively. State

s2 uses the ternary code of 0* in the state ID field of its

TCAM entries to share transitions with state s1. We give

state s0 the state ID of 10, and it uses the ternary code of

∗∗ in the state ID field of its TCAM entries to share tran-

sitions with both states s1 and s2. Second, we order the

state tables in the TCAM so that state s1 is first, state s2
is second, and state s0 is last. This facilitates the sharing

of transitions among different states where earlier states

have incomplete tables deferring some transitions to later

tables.

TCAM SRAM

Src State ID Input Dest State ID

s1 00 0110 0011 01: s2

0* 0110 001* 00: s1

s2 0* 0110 0000 10: s0

0* 0110 **** 01: s2

** 0110 0000 10: s0

s0 ** 0110 **** 00: s1

** **** **** 10: s0

Figure 2: TCAM table with shadow encoding

We must solve three problems to implement shadow

encoding: (1) Find the best order of the state tables in

the TCAM given that any order is allowed. (2) Identify

entries to remove from each state table given this order.

(3) Choose binary IDs and ternary codes for each state

that support the given order and removed entries. We

solve these problems in the rest of this section.

Our shadow encoding technique builds upon prior

work with default transitions [4, 6, 18, 19] by exploiting

the same state redundancy observation and using their

4



concepts of default transitions and Delayed input DFAs

(D2FA). However, our final technical solutions are dif-

ferent because we work with TCAM whereas prior tech-

niques work with RAM. For example, the concept of a

ternary state code has no meaning when working with

RAM. The key advantage of shadow encoding in TCAM

over prior default transition techniques is speed. Specif-

ically, shadow encoding incurs no delay while prior de-

fault transition techniques incur significant delay because

a DFA may have to traverse multiple default transitions

before consuming an input character.

3.2.2 Determining Table Order

We first describe how we compute the order of tables

within the TCAM. We use some concepts such as default

transitions and D2FA that were originally defined by Ku-

mar et al. [18] and subsequently refined [4, 6, 19].

s2

242 243

255

s0

s2

s1s1

s0

s0

s1

s2

[a,o]

else

defer

defer

c
[b,c]

a,[d,o]

(a) (b) (c)

Figure 3: D2FA, SRG, and deferment tree

A D2FA is a DFA with default transitions where each

state p can have at most one default transition to one

other state q in the D2FA. In a legal D2FA, the di-

rected graph consisting of only default transitions must

be acyclic; we call this graph a deferment forest. It is a

forest rather than a tree since more than one node may

not have a default transition. We call a tree in a defer-

ment forest a deferment tree.

We determine the order of state tables in TCAM by

constructing a deferment forest and then using the par-

tial order defined by the deferment forest. Specifically, if

there is a directed path from state p to state q in the defer-

ment forest, we say that state p defers to state q, denoted

p ≻ q. If p ≻ q, we say that state p is in state q’s shadow.

We use the partial order of a deferment forest to deter-

mine the order of state transition tables in the TCAM.

Specifically, state q’s transition table must be placed af-

ter the transition tables of all states in state q’s shadow.

We compute a deferment forest that minimizes the

TCAM representation of the resulting D2FA as follows.

Our algorithm builds upon algorithms from prior work

[4, 6, 18, 19], but there are several key differences. First,

unlike prior work, we do not pay a speed penalty for long

default transition paths. Thus, we achieve better transi-

tion sharing than prior work. Second, to maximize the

potential gains from our variable striding technique de-

scribed in Section 5 and table consolidation, we choose

states that have lots of self-loops to be the roots of our

deferment trees. Prior work has typically chosen roots

in order to minimize the distance from a leaf node to a

root, though Becchi and Crowley do consider related cri-

teria when constructing their D2FA [6]. Third, we ex-

plicitly ignore transition sharing between states that have

few transitions in common. This has been done implic-

itly in the past, but we show how doing so leads to better

results when we use table consolidation.

The algorithm for constructing deferment forests con-

sists of four steps. First, we construct a Space Reduction

Graph (SRG), which was proposed in [18], from a given

DFA. Given a DFA with |Q| states, an SRG is a clique

with |Q| vertices each representing a distinct state. The

weight of each edge is the number of common (outgoing)

transitions between the two connected states. Second,

we trim away edges with small weight from the SRG. In

our experiments, we use a cutoff of 10. We justify this

step based on the following observations. A key property

of SRGs that we observed in our experiments is that the

weight distribution is bimodal: an edge weight is typ-

ically either very small (< 10) or very large (> 180).

If we use these low weight edges for default transitions,

the resulting TCAM often has more entries. Plus, we

get fewer deferment trees which hinders our table con-

solidation technique (Section 4). Third, we compute a

deferment forest by running Kruskal’s algorithm to find

a maximum weight spanning forest. Fourth, for each de-

ferment tree, we pick the state that has largest number of

transitions going back to itself as the root. Fig. 3(b) and

(c) show the SRG and the deferment tree, respectively,

for the DFA in Fig. 1.

We make the following key observation about the root

states in our deferment trees. In most deferment trees,

more than 128 (i.e., half) of the root state’s outgoing tran-

sitions lead back to the root state; we call such a state a

self-looping state. Based on the pigeonhole principle and

the observed bimodal distribution, each deferment tree

can have at most one self-looping state, and it is clearly

the root state. We choose self-looping states as roots to

improve the effectiveness of variable striding which we

describe in Section 5. Intuitively, we have a very space-

efficient method, self-loop unrolling, for increasing the

stride of self-looping root states. The resulting increase

in stride applies to all states that defer transitions to this

self-looping root state.

When we apply Kruskal’s algorithm, we use a tie

breaking strategy because many edges have the same

weight. To have most deferment trees centered around

a self-looping state, we give priority to edges that have

the self-looping state as one endpoint. If we still have a
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tie, we favor edges by the total number of edges in the

current spanning tree that both endpoints are connected

to prioritize nodes that are already well connected.

3.2.3 Choosing Transitions

For a given DFA and a corresponding deferment forest,

we construct a D2FA as follows. If state p has a default

transition to state q, we remove any transitions that are

common to both p’s transition table and q’s transition ta-

ble from p’s transition table. We denote the default tran-

sition in the D2FA with a dashed arrow labeled with de-

fer. Fig. 3(a) shows the D2FA for the DFA in Fig. 1 given

the corresponding deferment forest (a deferment tree in

this case) in Figure 3(c). We now compute the TCAM

entries for each transition table.

(1) For each state, enumerate all individual transition

rules except the deferred transitions. For each transition

rule, the predicate is the label of the transition and the

decision is the state ID of the destination state. For now,

we just ensure each state has a unique state ID. Thus, we

get an incomplete 1-dimensional classifier for each state.

(2) For each state, we minimize its transition table using

the 1-dimensional incomplete classifier minimization al-

gorithm in [21]. This algorithm works by first adding a

default rule with a unique decision that has weight larger

than the size of the domain, then applying the weighted

one-dimensional TCAM minimization algorithm in [20]

to the resulting complete classifier, and finally remove

the default rule, which is guaranteed to remain the default

rule in the minimal complete classifier due to its huge

weight. In our solution, the character bundling technique

is used in this step. We also consider some optimizations

where we specify some deferred transitions to reduce the

total number of TCAM entries. For example, the second

entry in s2’s table in Fig. 2 is actually a deferred transi-

tion to state s0’s table, but not using it would result in 4

TCAM entries to specify the transitions that s2 does not

share with s0.

3.2.4 Shadow Encoding Algorithm

To ensure that proper sharing of transitions occurs, we

need to encode the source state IDs of the TCAM entries

according to the following shadow encoding scheme.

Each state is assigned a binary state ID and a ternary

shadow code. State IDs are used in the decisions of tran-

sition rules. Shadow codes are used in the source state

ID field of transition rules. In a valid assignment, every

state ID and shadow code must have the same number of

bits, which we call the shadow length of the assignment.

For each state p, we use ID(p) and SC(p) to denote the

state ID and shadow code of p. A valid assignment of

state IDs and shadow codes for a deferment forest must

satisfy the following four shadow encoding properties:

1. Uniqueness Property: For any two distinct states p
and q, ID(p) 6= ID(q) and SC(p) 6= SC(q).

2. Self-Matching Property: For any state p, ID(p) ∈
SC(p) (i.e., ID(p) matches SC(p)).

3. Deferment Property: For any two states p and q, p ≻
q (i.e., q is an ancestor of p in the given deferment

tree) if and only if SC(p) ⊂ SC(q).

4. Non-interception Property: For any two distinct

states p and q, p ≻ q if and only if ID(p) ∈ SC(q).

Intuitively, q’s shadow code must include the state ID of

all states in q’s shadow and cannot include the state ID

of any states not in q’s shadow.

We give an algorithm for computing a valid assign-

ment of state IDs and shadow codes for each state given

a single deferment tree DT . We handle deferment forests

by simply creating a virtual root node whose children are

the roots of the deferment trees in the forest and then run-

ning the algorithm on this tree. In the following, we refer

to states as nodes.

Our algorithm uses the following internal variables for

each node v: a local binary ID denoted L(v), a global

binary ID denoted G(v), and an integer weight denoted

W (v) that is the shadow length we would use for the

subtree of DT rooted at v. Intuitively, the state ID of

v will be G(v)|L(v) where | denotes concatenation, and

the shadow code of v will be the prefix string G(v) fol-

lowed by the required number of *’s; some extra padding

characters may be needed. We use #L(v) and #G(v)to
denote the number of bits in L(v) and G(v), respectively.

Our algorithm processes nodes in a bottom-up fashion.

For each node v, we initially set L(v) = G(v) = ∅ and

W (v) = 0. Each leaf node of DT is now processed,

which we denote by marking them red. We process an

internal node v when all its children v1, · · · , vn are red.

Once a node v is processed, its weight W (v) and its local

ID L(v) are fixed, but we will prepend additional bits to

its global ID G(v) when we process its ancestors in DT .

We assign v and each of its children a variable-length

binary code, which we call HCode. The HCode provides

a unique signature that uniquely distinguishes each of the

n+1 nodes from each other while satisfying the four re-

quired shadow code properties. One option would be to

simply use lg(n + 1) bits and assign each node a binary

number from 0 to n. However, to minimize the shadow

code length W (v), we use a Huffman coding style algo-

rithm instead to compute the HCodes and W (v). This

algorithm uses two data structures: a binary encoding

tree T with n + 1 leaf nodes, one for v and each of its

children, and a min-priority queue, initialized with n+1
elements, one for v and each of its children, that is or-

dered by node weight. While the priority queue has more

than one element, we remove the two elements x and y
with lowest weight from the priority queue, create a new
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Figure 4: Shadow encoding example

internal node z in T with two children x and y and set

weight(z)=maximum(weight(x), weight(y))+1, and then

put element z into the priority queue. When there is only

a single element in the priority queue, the binary encod-

ing tree T is complete. The HCode assigned to each leaf

node v′ is the path in T from the root node to v′ where

left edges have value 0 and right edges have value 1. We

update the internal variables of v and its descendants in

DT as follows. We set L(v) to be its HCode, and W (v)
to be the weight of the root node of T ; G(v) is left empty.

For each child vi, we prepend vi’s HCode to the global

ID of every node in the subtree rooted at vi including vi
itself. We then mark v as red. This continues until all

nodes are red.

We now assign each node a state ID and a shadow

code. First, we set the shadow length to be k, the weight

of the root node of DT . We use {∗}m to denote a ternary

string with m number of *’s and {0}m to denote a bi-

nary string with m number of 0’s. For each node v,

we compute v’s state ID and shadow code as follows:

ID(v) = G(v)|L(v)|{0}k−#G(v)−#L(v), SC(v) =
G(v)|{∗}k−#G(v). We illustrate our shadow encoding

algorithm in Figure 4. Figure 4(a) shows all the inter-

nal variables just before v1 is processed. Figure 4(b)

shows the Huffman style binary encoding tree T built

for node v1 and its children v2, v3, and v4 and the result-

ing HCodes. Figure 4(c) shows each node’s final weight,

global ID, local ID, state ID and shadow code.

Experimentally, we found that our shadow encoding

algorithm is effective at minimizing shadow length. No

DFA had a shadow length larger than ⌈log2 |Q|⌉+3, and

⌈log2 |Q|⌉ is the minimum possible shadow length.

4 Table Consolidation

We now present table consolidation where we combine

multiple transition tables for different states into a single

transition table such that the combined table takes less

TCAM space than the total TCAM space used by the

original tables. To define table consolidation, we need

two new concepts: k-decision rule and k-decision table.

A k-decision rule is a rule whose decision is an array

of k decisions. A k-decision table is a sequence of k-

decision rules following the first-match semantics. Given

a k-decision table T and i (0 ≤ i < k), if for any rule r
in T we delete all the decisions except the i-th decision,

we get a 1-decision table, which we denote as T[i]. In

table consolidation, we take a set of k 1-decision tables

T0, · · · ,Tk−1 and construct a k-decision table T such

that for any i (0 ≤ i < k), the condition Ti ≡ T[i] holds

where Ti ≡ T[i] means that Ti and T[i] are equivalent

(i.e., they have the same decision for every search key).

We call the process of computing k-decision table T ta-

ble consolidation, and we call T the consolidated table.

4.1 Observations

Table consolidation is based three observations. First,

semantically different TCAM tables may share common

entries with possibly different decisions. For example,

the three tables for s0, s1 and s2 in Fig. 1 have three en-

tries in common: 01100000, 0110****, and ********.

Table consolidation provides a novel way to remove such

information redundancy. Second, given any set of k 1-

decision tables T0, · · · ,Tk−1, we can always find a k-

decision table T such that for any i (0 ≤ i < k), the

condition Ti ≡ T[i] holds. This is easy to prove as

we can use one entry per each possible binary search

key in T. Third, a TCAM chip typically has a build-in

SRAM module that is commonly used to store lookup

decisions. For a TCAM with n entries, the SRAM mod-

ule is arranged as an array of n entries where SRAM[i]

stores the decision of TCAM[i] for every i. A TCAM

lookup returns the index of the first matching entry in the

TCAM, which is then used as the index to directly find

the corresponding decision in the SRAM. In table con-

solidation, we essentially trade SRAM space for TCAM

space because each SRAM entry needs to store multiple

decisions. As SRAM is cheaper and more efficient than
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TCAM, moderately increasing SRAM usage to decrease

TCAM usage is worthwhile.

Fig. 5 shows the TCAM lookup table and the SRAM

decision table for a 3-decision consolidated table for

states s0, s1, and s2 in Fig. 1. In this example, by table

consolidation, we reduce the number of TCAM entries

from 11 to 5 for storing the transition tables for states

s0, s1, and s2. This consolidated table has an ID of 0.

As both the table ID and column ID are needed to en-

code a state, we use the notation < Table ID > @ <
Column ID > to represent a state.

TCAM SRAM

Consolidated Input Column ID

Src Table ID Character 00 01 10

0 0110 0000 s0 s0 s0

0 0110 0010 s1 s1 s1

0 0110 0011 s1 s2 s1

0 0110 **** s1 s2 s2

0 **** **** s0 s0 s0

Figure 5: 3-decision table for 3 states in Fig. 1

There are two key technical challenges in table con-

solidation. The first challenge is how to consolidate k
1-decision transition tables into a k-decision transition

table. The second challenge is which 1-decision transi-

tion tables should be consolidated together. Intuitively,

the more similar two 1-decision transition tables are, the

more TCAM space saving we can get from consolidating

them together. However, we have to consider the defer-

ment relationship among states. We present our solutions

to these two challenges.

4.2 Computing a k-decision table

In this section, we assume we know which states need to

be consolidated together and present a local state consol-

idation algorithm that takes a k1-decision table for state

set Si and a k2-decision table for another state set Sj as

its input and outputs a consolidated (k1 + k2)-decision

table for state set Si ∪ Sj . For ease of presentation, we

first assume that k1 = k2 = 1.

Let s1 and s2 be the two input states which have de-

fault transitions to states s3 and s4. We enforce a con-

straint that if we do not consolidate s3 and s4 together,

then s1 and s2 cannot defer any transitions at all. If we do

consolidate s3 and s4 together, then s1 and s2 may have

incomplete transition tables due to default transitions to

s3 and s4, respectively. We assign state s1 column ID 0

and state s2 column ID 1. This consolidated table will be

assigned a common table ID X . Thus, we encode s1 as

X@0 and s2 as X@1.

The key concepts underlying this algorithm are break-

points and critical ranges. To define breakpoints, it is

helpful to view Σ as numbers ranging from 0 to |Σ| − 1;

given 8 bit characters, |Σ| = 256. For any state s, we

define a character i ∈ Σ to be a breakpoint for s if

δ(s, i) 6= δ(s, i − 1). For the end cases, we define 0
and |Σ| to be breakpoints for every state s. Let b(s)
be the set of breakpoints for state s. We then define

b(S) =
⋃

s∈S b(s) to be the set of breakpoints for a

set of states S ⊂ Q. Finally, for any set of states S,

we define r(S) to be the set of ranges defined by b(S):
r(S) = {[0, b2−1], [b2, b3−1], . . . , [b|b(S)|−1, |Σ|−1]}
where bi is ith smallest breakpoint in b(S). Note that

0 = b1 is the smallest breakpoint and |Σ| is the largest

breakpoint in b(S). Within r(S), we label the range be-

ginning at breakpoint bi as ri for 1 ≤ i ≤ |b(S)| − 1. If

δ(s, bi) is deferred, then ri is a deferred range.

When we consolidate s1 and s2 together, we compute

b({s1, s2}) and r({s1, s2}). For each r′ ∈ r({s1, s2})
where r′ is not a deferred range for both s1 and s2, we

create a consolidated transition rule where the decision

of the entry is the ordered pair of decisions for state s1
and s2 on r′. For each r′ ∈ r({s1, s2}) where r′ is a

deferred range for one of s1 but not the other, we fill in

r′ in the incomplete transition table where it is deferred,

and we create a consolidated entry where the decision of

the entry is the ordered pair of decisions for state s1 and

s2 on r′. Finally, for each r′ ∈ r({s1, s2}) where r′ is

a deferred range for both s1 and s2, we do not create a

consolidated entry. This produces a non-overlapping set

of transition rules that may be incomplete if some ranges

do not have a consolidated entry. If the final consolidated

transition table is complete, we minimize it using the

optimal 1-dimensional TCAM minimization algorithm

in [20, 31]. If the table is incomplete, we minimize it

using the 1-dimensional incomplete classifier minimiza-

tion algorithm in [21]. We generalize this algorithm to

cases where k1 > 1 and k2 > 1 by simply considering

k1 + k2 states when computing breakpoints and ranges.

4.3 Choosing States to Consolidate

We now describe our global consolidation algorithm for

determining which states to consolidate together. As we

observed earlier, if we want to consolidate two states

s1 and s2 together, we need to consolidate their parent

nodes in the deferment forest as well or else lose all the

benefits of shadow encoding. Thus, we propose to con-

solidate two deferment trees together.

A consolidated deferment tree must satisfy the follow-

ing properties. First, each node is to be consolidated with

at most one node in the second tree; some nodes may not

be consolidated with any node in the second tree. Sec-

ond, a level i node in one tree must be consolidated with

a level i node in the second tree. The level of a node

is its distance from the root. We define the root to be a

level 0 node. Third, if two level i nodes are consolidated

together, their level i− 1 parent nodes must also be con-

solidated together. An example legal matching of nodes
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between two deferment trees is depicted in Fig. 6.

Figure 6: Consolidating two trees

Given two deferment trees, we start the consolidation

process from the roots. After we consolidate the two

roots, we need to decide how to pair their children to-

gether. For each pair of nodes that are consolidated to-

gether, we again must choose how to pair their children

together, and so on. We make an optimal choice using

a combination of dynamic programming and matching

techniques. Our algorithm proceeds as follows. Suppose

we wish to compute the minimum cost C(x, y), mea-

sured in TCAM entries, of consolidating two subtrees

rooted at nodes x and y where x has u children X =
{x1, . . . , xu} and y has v children Y = {y1, . . . , yv}.

We first recursively compute C(xi, yj) for 1 ≤ i ≤ u
and 1 ≤ j ≤ v using our local state consolidation al-

gorithm as a subroutine. We then construct a complete

bipartite graph KX,Y such that each edge (xi, yj) has

the edge weight C(xi, yj) for 1 ≤ i ≤ u and 1 ≤ j ≤ v.

Here C(x, y) is the cost of a minimum weight match-

ing of K(X,Y ) plus the cost of consolidating x and y.

When |X | 6= |Y |, to make the sets equal in size, we pad

the smaller set with null states that defer all transitions.
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Figure 7: D2FA for {a.*bc, cde}

Finally, we must

decide which trees

to consolidate to-

gether. We as-

sume that we pro-

duce k-decision ta-

bles where k is a

power of 2. We

describe how we

solve the problem

for k = 2 first.

We create an edge-

weighted complete

graph with where

each deferment tree

is a node and where

the weight of each edge is the cost of consolidating the

two corresponding deferment trees together. We find a

minimum weight matching of this complete graph to give

us an optimal pairing for k = 2. For larger k = 2l, we

then repeat this process l − 1 times. Our matching is not

necessarily optimal for k > 2.

In some cases, the deferment forest may have only one

tree. In such cases, we consider consolidating the sub-

trees rooted at the children of the root of the single defer-

ment tree. We also consider similar options if we have a

few deferment trees but they are not structurally similar.

4.4 Effectiveness of Table Consolidation

We now explain why table consolidation works well on

real-world RE sets. Most real-world RE sets contain

REs with wildcard closures ‘.*’ where the wildcard ‘.’

matches any character and the closure ‘*’ allows for un-

limited repetitions of the preceding character. Wildcard

closures create deferment trees with lots of structural

similarity. For example, consider the D2FA in Fig. 7

for RE set \{a.*bc, cde\} where we use dashed ar-

rows to represent the default transitions. The wildcard

closure ‘.*’ in the RE a.*bc duplicates the entire DFA

sub-structure for recognizing string cde. Thus, table

consolidation of the subtree (0, 1, 2, 3) with the subtree

(4, 5, 6, 7) will lead to significant space saving.

5 Variable Striding

We explore ways to improve RE matching throughput by

consuming multiple characters per TCAM lookup. One

possibility is a k-stride DFA which uses k-stride transi-

tions that consume k characters per transition. Although

k-stride DFAs can speed up RE matching by up to a fac-

tor of k, the number of states and transitions can grow

exponentially in k. To limit the state and transition space

explosion, we propose variable striding using variable-

stride DFAs. A k-var-stride DFA consumes between 1

and k characters in each transition with at least one tran-

sition consuming k characters. Conceptually, each state

in a k-var-stride DFA has 256k transitions, and each tran-

sition is labeled with (1) a unique string of k characters

and (2) a stride length j (1 ≤ j ≤ k) indicating the num-

ber of characters consumed.

In TCAM-based variable striding, each TCAM lookup

uses the next k consecutive characters as the lookup key,

but the number of characters consumed in the lookup

varies from 1 to k; thus, the lookup decision contains

both the destination state ID and the stride length.

5.1 Observations

We use an example to show how variable striding can

achieve a significant RE matching throughput increase

with a small and controllable space increase. Fig. 8

shows a 3-var-stride transition table that corresponds to

state s0 in Figure 1. This table only has 7 entries as op-

posed to 116 entries in a full 3-stride table for s0. If we

assume that each of the 256 characters is equally likely

to occur, the average number of characters consumed per
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3-var-stride transition of s0 is 1 ∗ 1/16 + 2 ∗ 15/256 +
3 ∗ 225/256 = 2.82.

TCAM SRAM

SRC Input DEC : Stride

s0 0110 0000 **** **** **** **** s0 : 1

s0 0110 **** **** **** **** **** s1 : 1

s0 **** **** 0110 0000 **** **** s0 : 2

s0 **** **** 0110 **** **** **** s1 : 2

s0 **** **** **** **** 0110 0000 s0 : 3

s0 **** **** **** **** 0110 **** s1 : 3

s0 **** **** **** **** **** **** s0 : 3

Figure 8: 3-var-stride transition table for s0

5.2 Eliminating State Explosion

We first explain how converting a 1-stride DFA to a k-

stride DFA causes state explosion. For a source state and

a destination state pair (s, d), a k-stride transition path

from s to d may contain k−1 intermediate states (exclud-

ing d); for each unique combination of accepting states

that appear on a k-stride transition path from s to d, we

need to create a new destination state because a unique

combination of accepting states implies that the input has

matched a unique combination of REs. This can be a

very large number of new states.

We eliminate state explosion by ending any k-var-

stride transition path at the first accepting state it reaches.

Thus, a k-var-stride DFA has the exact same state set

as its corresponding 1-stride DFA. Ending k-var-stride

transitions at accepting states does have subtle interac-

tions with table consolidation and shadow encoding. We

end any k-var-stride consolidated transition path at the

first accepting state reached in any one of the paths being

consolidated which can reduce the expected throughput

increase of variable striding. There is a similar but even

more subtle interaction with shadow encoding which we

describe in the next section.

5.3 Controlling Transition Explosion

In a k-stride DFA converted from a 1-stride DFA with al-

phabet Σ, a state has |Σ|k outgoing k-stride transitions.

Although we can leverage our techniques of character

bundling and shadow encoding to minimize the number

of required TCAM entries, the rate of growth tends to be

exponential with respect to stride length k. We have two

key ideas to control transition explosion: k-var-stride

transition sharing and self-loop unrolling.

5.3.1 k-var-stride Transition Sharing Algorithm

Similar to 1-stride DFAs, there are many transition shar-

ing opportunities in a k-var-stride DFA. Consider two

states s0 and s1 in a 1-stride DFA where s0 defers to s1.

The deferment relationship implies that s0 shares many

common 1-stride transitions with s1. In the k-var-stride

DFA constructed from the 1-stride DFA, all k-var-stride

transitions that begin with these common 1-stride tran-

sitions are also shared between s0 and s1. Furthermore,

two transitions that do not begin with these common 1-

stride transitions may still be shared between s0 and s1.

For example, in the 1-stride DFA fragment in Fig. 9, al-

though s1 and s2 do not share a common transition for

character a, when we construct the 2-var-stride DFA, s1
and s2 share the same 2-stride transition on string aa that

ends at state s5.

Figure 9: s1 and s2 share transi-

tion aa

To promote

transition sharing

among states in a

k-var-stride DFA,

we first need to

decide on the

deferment rela-

tionship among

states. The ideal

deferment rela-

tionship should be calculated based on the SRG of the

final k-var-stride DFA. However, the k-var-stride DFA

cannot be finalized before we need to compute the

deferment relationship among states because the final

k-var-stride DFA is subject to many factors such as

available TCAM space. There are two approximation

options for the final k-var-stride DFA for calculating

the deferment relationship: the 1-stride DFA and the

full k-stride DFA. We have tried both options in our

experiments, and the difference in the resulting TCAM

space is negligible. Thus, we simply use the deferment

forest of the 1-stride DFA in computing the transition

tables for the k-var-stride DFA.

Second, for any two states s1 and s2 where s1 defers to

s2, we need to compute s1’s k-var-stride transitions that

are not shared with s2 because those transitions will con-

stitute s1’s k-var-stride transition table. Although this

computation is trivial for 1-stride DFAs, this is a sig-

nificant challenge for k-var-stride DFAs because each

state has too many (256k) k-var-stride transitions. The

straightforward algorithm that enumerates all transitions

has a time complexity of O(|Q|2|Σ|k), which grows ex-

ponentially with k. We propose a dynamic program-

ming algorithm with a time complexity of O(|Q|2|Σ|k),
which grows linearly with k. Our key idea is that the

non-shared transitions for a k-stride DFA can be quickly

computed from the non-shared transitions of a (k-1)-var-

stride DFA. For example, consider the two states s1 and

s2 in Fig. 9 where s1 defers to s2. For character a, s1
transits to s3 while s2 transits to s4. Assuming that we

have computed all (k-1)-var-stride transitions of s3 that

are not shared with the (k-1)-var-stride transitions of s4,

if we prepend all these (k-1)-var-stride transitions with
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character a, the resulting k-var-stride transitions of s1 are

all not shared with the k-var-stride transitions of s2, and

therefore should all be included in s1’s k-var-stride tran-

sition table. Formally, using n(si, sj , k) to denote the

number of k-stride transitions of si that are not shared

with sj , our dynamic programming algorithm uses the

following recursive relationship between n(si, sj , k) and

n(si, sj, k − 1):

n(si, sj , 0) =

{

0 if si = sj
1 if si 6= sj

(1)

n(si, sj, k) =
∑

c∈Σ

n(δ(si, c), δ(sj , c), k − 1) (2)

The above formulae assume that the intermediate

states on the k-stride paths starting from si or sj are all

non-accepting. For state si, we stop increasing the stride

length along a path whenever we encounter an accepting

state on that path or on the corresponding path starting

from sj . The reason is similar to why we stop a con-

solidated path at an accepting state, but the reasoning is

more subtle.

Let p be the string that leads sj to an accepting state.

The key observation is that we know that any k-var-stride

path that starts from sj and begins with p ends at that ac-

cepting state. This means that si cannot exploit transition

sharing on any strings that begin with p.

The above dynamic programming algorithm produces

non-overlapping and and incomplete transition tables

that we compress using the 1-dimensional incomplete

classifier minimization algorithm in [21].

5.3.2 Self-Loop Unrolling Algorithm

We now consider root states, most of which are self-

looping. We have two methods to compute the k-var-

stride transition tables of root states. The first is direct

expansion (stopping transitions at accepting states) since

these states do not defer to other states which results in

an exponential increase in table size with respect to k.

The second method, which we call self-loop unrolling,

scales linearly with k.

Self-loop unrolling increases the stride of all the self-

loop transitions encoded by the last default TCAM entry.

Self-loop unrolling starts with a root state j-var-stride

transition table encoded as a compressed TCAM table of

n entries with a final default entry representing most of

the self-loops of the root state. Note that given any com-

plete TCAM table where the last entry is not a default

entry, we can always replace that last entry with a default

entry without changing the semantics of the table. We

generate the (j+1)-var-stride transition table by expand-

ing the last default entry into n new entries, which are

obtained by prepending 8 *s as an extra default field to

the beginning of the original n entries. This produces

a (j+1)-var-stride transition table with 2n − 1 entries.

Fig. 8 shows the resulting table when we apply self-loop

unrolling twice on the DFA in Fig. 1.

5.4 Variable Striding Selection Algorithm

We now propose solutions for the third key challenge -

which states should have their stride lengths increased

and by how much, i.e., how should we compute the tran-

sition function δ. Note that each state can independently

choose its variable striding length as long as the final

transition tables are composed together according to the

deferment forest. This can be easily proven based on

the way that we generate k-var-stride transition tables.

For any two states s1 and s2 where s1 defers to s2, the

way that we generate s1’s k-var-stride transition table

is seemingly based on the assumption that s2’s transi-

tion table is also k-var-stride; actually, we do not have

this assumption. For example, if we choose k-var-stride

(2 ≤ k) for s1 and 1-stride for s2, all strings from s1
will be processed correctly; the only issue is that strings

deferred to s2 will process only one character.

We view this as a packing problem: given a TCAM

capacity C, for each state s, we select a variable stride

length value Ks, such that
∑

s∈Q |T(s,Ks)| ≤ C, where

T(s,Ks) denotes the Ks-var-stride transition table of

state s. This packing problem has a flavor of the knap-

sack problem, but an exact formulation of an optimiza-

tion function is impossible without making assumptions

about the input character distribution. We propose the

following algorithm for finding a feasible δ that strives

to maximize the minimum stride of any state. First, we

use all the 1-stride tables as our initial selection. Second,

for each j-var-stride (j ≥ 2) table t of state s, we create

a tuple (l, d, |t|) where l denotes variable stride length, d
denotes the distance from state s to the root of the defer-

ment tree that s belongs to, and |t| denotes the number

of entries in t. As stride length l increases, the individual

table size |t| may increase significantly, particularly for

the complete tables of root states. To balance table sizes,

we set limits on the maximum allowed table size for root

states and non-root states. If a root state table exceeds the

root state threshold when we create its j-var-stride table,

we apply self-loop unrolling once to its (j−1)-var-stride

table to produce a j-var-stride table. If a non-root state

table exceeds the non-root state threshold when we cre-

ate its j-var-stride table, we simply use its j−1-var-stride

table as its j-var-stride table. Third, we sort the tables by

these tuple values in increasing order first using l, then

using d, then using |t|, and finally a pseudorandom coin

flip to break ties. Fourth, we consider each table t in or-

der. Let t′ be the table for the same state s in the current

selection. If replacing t′ by t does not exceed our TCAM

capacity C, we do the replacement.
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6 Implementation and Modeling

Entries TCAM TCAM Latency

Chip size Chip size ns

(36-bit wide) (72-bit wide)

1024 0.037 Mb 0.074 Mb 0.94

2048 0.074 Mb 0.147 Mb 1.10

4096 0.147 Mb 0.295 Mb 1.47

8192 0.295 Mb 0.590 Mb 1.84

16384 0.590 Mb 1.18 Mb 2.20

32768 1.18 Mb 2.36 Mb 2.57

65536 2.36 Mb 4.72 Mb 2.94

131072 4.72 Mb 9.44 Mb 3.37

Table 1: TCAM size in Mb and Latency in ns

We now describe some implementation issues associ-

ated with our TCAM based RE matching solution. First,

the only hardware required to deploy our solution is the

off-the-shelf TCAM (and its associated SRAM). Many

deployed networking devices already have TCAMs, but

these TCAMs are likely being used for other purposes.

Thus, to deploy our solution on existing network devices,

we would need to share an existing TCAM with another

application. Alternatively, new networking devices can

be designed with an additional dedicated TCAM chip.

Second, we describe how we update the TCAM when

an RE set changes. First, we must compute a new DFA

and its corresponding TCAM representation. For the

moment, we recompute the TCAM representation from

scratch, but we believe a better solution can be found and

is something we plan to work on in the future. We report

some timing results in our experimental section. Fortu-

nately, this is an offline process during which time the

DFA for the original RE set can still be used. The sec-

ond step is loading the new TCAM entries into TCAM. If

we have a second TCAM to support updates, this rewrite

can occur while the first TCAM chip is still processing

packet flows. If not, RE matching must halt while the

new entries are loaded. This step can be performed very

quickly, so the delay will be very short. In contrast, up-

dating FPGA circuitry takes significantly longer.

We have not developed a full implementation of our

system. Instead, we have only developed the algorithms

that would take an RE set and construct the associated

TCAM entries. Thus, we can only estimate the through-

put of our system using TCAM models. We use Agrawal

and Sherwood’s TCAM model [1] assuming that each

TCAM chip is manufactured with a 0.18µm process to

compute the estimated latency of a single TCAM lookup

based on the number of TCAM entries searched. These

model latencies are shown in Table 1. We recognize that

some processing must be done besides the TCAM lookup

such as composing the next state ID with the next input

character; however, because the TCAM lookup latency is

much larger than any other operation, we focus only on

this parameter when evaluating the potential throughput

of our system.

7 Experimental Results

In this section, we evaluate our TCAM-based RE match-

ing solution on real-world RE sets focusing on two met-

rics: TCAM space and RE matching throughput.

7.1 Methodology

We obtained 4 proprietary RE sets, namely C7, C8, C10,

and C613, from a large networking vendor, and 4 public

RE sets, namely Snort24, Snort31, Snort34, and Bro217

from the authors of [6] (we do report a slightly differ-

ent number of states for Snort31, 20068 to 20052; this

may be due to Becchi et al. making slight changes to

their Regular Expression Processor that we used). Quot-

ing Becchi et al. [6], “Snort rules have been filtered ac-

cording to the headers ($HOME NET, any, $EXTER-

NAL NET, $HTTP PORTS/any) and ($HOME NET,

any, 25, $HTTP PORTS/any). In the experiments which

follow, rules have been grouped so to obtain DFAs with

reasonable size and, in parallel, have datasets with dif-

ferent characteristics in terms of number of wildcards,

frequency of character ranges and so on.” Of these 8 RE

sets, the REs in C613 and Bro217 are all string match-

ing REs, the REs in C7, C8, and C10 all contain wild-

card closures ‘.*’, and about 40% of the REs in Snort 24,

Snort31, and Snort34 contain wildcard closures ‘.*’.

Finally, to test the scalability of our algorithms, we

use one family of 34 REs from a recent public release

of the Snort rules with headers ($EXTERNAL NET,

$HTTP PORTS, $HOME NET, any), most of which

contain wildcard closures ‘.*’. We added REs one at a

time until the number of DFA states reached 305,339.

We name this family Scale.

We calculate TCAM space by multiplying the number

of entries by the TCAM width: 36, 72, 144, 288, or 576

bits. For a given DFA, we compute a minimum width by

summing the number of state ID bits required with the

number of input bits required. In all cases, we needed at

most 16 state ID bits. For 1-stride DFAs, we need exactly

8 input character bits, and for 7-var-stride DFAs, we need

exactly 56 input character bits. We then calculate the

TCAM width by rounding the minimum width up to the

smallest larger legal TCAM width. For all our 1-stride

DFAs, we use TCAM width 36. For all our 7-var-stride

DFAs, we use TCAM width 72.

We estimate the potential throughput of our TCAM-

based RE matching solution by using the model TCAM

lookup speeds we computed in Section 6 to determine

how many TCAM lookups can be performed in a second
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TS TS + TC2 TS + TC4

RE set # states TCAM #Entries throughput TCAM #Entries thru TCAM #Entries thru

megabits per state Gbps megabits per state Gbps megabits per state Gbps

Bro217 6533 0.31 1.40 3.64 0.21 0.94 4.35 0.17 0.78 4.35

C613 11308 0.63 1.61 3.11 0.52 1.35 3.64 0.45 1.17 3.64

C10 14868 0.61 1.20 3.11 0.31 0.61 3.64 0.16 0.32 4.35

C7 24750 1.00 1.18 3.11 0.53 0.62 3.64 0.29 0.34 3.64

C8 3108 0.13 1.20 5.44 0.07 0.62 5.44 0.03 0.33 8.51

Snort24 13886 0.55 1.16 3.64 0.30 0.64 3.64 0.18 0.38 4.35

Snort31 20068 1.43 2.07 2.72 0.81 1.17 2.72 0.50 0.72 3.64

Snort34 13825 0.56 1.18 3.11 0.30 0.62 3.64 0.17 0.36 4.35

Table 2: TCAM size and throughput for 1-stride DFAs

for a given number of TCAM entries and then multiply-

ing this number by the number of characters processed

per TCAM lookup. With 1-stride TCAMs, the number

of characters processed per lookup is 1. For 7-var-stride

DFAs, we measure the average number of characters pro-

cessed per lookup in a variety of input streams. We use

Becchi et al.’s network traffic generator [9] to generate

a variety of synthetic input streams. This traffic gener-

ator includes a parameter that models the probability of

malicious traffic pM . With probability pM , the next char-

acter is chosen so that it leads away from the start state.

With probability (1 − pM ), the next character is chosen

uniformly at random.

7.2 Results on 1-stride DFAs

Table 2 shows our experimental results on the 8 RE sets

using 1-stride DFAs. We use TS to denote our transition

sharing algorithm including both character bundling and

shadow encoding. We use TC2 and TC4 to denote our

table consolidation algorithm where we consolidate at

most 2 and 4 transition tables together, respectively. For

each RE set, we measure the number states in its 1-stride

DFA, the resulting TCAM space in megabits, the average

number of TCAM table entries per state, and the pro-

jected RE matching throughput; the number of TCAM

entries is the number of states times the average number

of entries per state. The TS column shows our results

when we apply TS alone to each RE set. The TS+TC2

and TS+TC4 columns show our results when we apply

both TS and TC under the consolidation limit of 2 and 4,

respectively, to each RE set.

We draw the following conclusions from Table 2. (1)

Our RE matching solution is extremely effective in saving

TCAM space. Using TS+TC4, the maximum TCAM size

for the 8 RE sets is only 0.50 Mb, which is two orders of

magnitude smaller than the current largest commercially

available TCAM chip size of 72 Mb. More specifically,

the number of TCAM entries per DFA state ranges be-

tween .32 and 1.17 when we use TC4. We require 16,

32, or 64 SRAM bits per TCAM entry for TS, TS+TC2,

and TS+TC4, respectively as we need to record 1, 2, or

4 state 16 bit state IDs in each decision, respectively.

(2) Transition sharing alone is very effective. With the

transition sharing algorithm alone, the maximum TCAM

size is only 1.43Mb for the 8 RE sets. Furthermore, we

see a relatively tight range of TCAM entries per state of

1.16 to 2.07. Transition sharing works extremely well

with all 8 RE sets including those with wildcard clo-

sures and those with primarily strings. (3) Table con-

solidation is very effective. On the 8 RE sets, adding

TC2 to TS improves compression by an average of 41%

(ranging from 16% to 49%) where the maximum pos-

sible is 50%. We measure improvement by computing

(TS − (TS + TC2))/TS). Replacing TC2 with TC4

improves compression by an average of 36% (ranging

from 13% to 47%) where we measure improvement by

computing ((TS+TC2)−(TS+TC4))/(TS+TC2).
Here we do observe a difference in performance, though.

For the two RE sets Bro217 and C613 that are primarily

strings without table consolidation, the average improve-

ments of using TC2 and TC4 are only 24% and 15%,

respectively. For the remaining six RE sets that have

many wildcard closures, the average improvements are

47% and 43%, respectively. The reason, as we touched

on in Section 4.4, is how wildcard closure creates multi-

ple deferment trees with almost identical structure. Thus

wildcard closures, the prime source of state explosion, is

particularly amenable to compression by table consoli-

dation. In such cases, doubling our table consolidation

limit does not greatly increase SRAM cost. Specifically,

while the number of SRAM bits per TCAM entry dou-

bles as we double the consolidation limit, the number

of TCAM entries required almost halves! (4) Our RE

matching solution achieves high throughput with even 1-

stride DFAs. For the TS+TC4 algorithm, on the 8 RE

sets, the average throughput is 4.60Gbps (ranging from

3.64Gbps to 8.51Gbps).

We use our Scale dataset to assess the scalability of

our algorithms’ performance focusing on the number of

TCAM entries per DFA state. Fig. 10(a) shows the num-

ber of TCAM entries per state for TS, TS+TC2, and

TS+TC4 for the Scale REs containing 26 REs (with DFA

size 1275) to 34 REs (with DFA size 305,339). The DFA

size roughly doubled for every RE added. In general, the
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Figure 10: TCAM entries per DFA state (a) and compute

time per DFA state (b) for Scale 26 through Scale 34.

number of TCAM entries per state is roughly constant

and actually decreases with table consolidation. This is

because table consolidation performs better as more REs

with wildcard closures are added as there are more trees

with similar structure in the deferment forest.

We now analyze running time. We ran our exper-

iments on the Michigan State University High Perfor-

mance Computing Center (HPCC). The HPCC has sev-

eral clusters; most of our experiments were executed

on the fastest cluster which has nodes that each have 2

quad-core Xeons running at 2.3GHz. The total RAM for

each node is 8GB. Fig. 10(b) shows the compute time

per state in milliseconds. The build times are the time

per DFA state required to build the non-overlapping set

of transitions (applying TS and TC); these increase lin-

early because these algorithms are quadratic in the num-

ber of DFA states. For our largest DFA Scale 34 with

305,339 states, the total time required for TS, TS+TC2,

and TS+TC4 is 19.25 mins, 118.6 hrs, and 150.2 hrs,

respectively. These times are cumulative; that is going

from TS+TC2 to TS+TC4 requires an additional 31.6

hours. This table consolidation time is roughly one

fourth of the first table consolidation time because the

number of DFA states has been cut in half by the first ta-

ble consolidation and table consolidation has a quadratic

running time in the number of DFA states. The BW times

are the time per DFA state required to minimize these

transition tables using the Bitweaving algorithm in [21];

these times are roughly constant as Bitweaving depends

on the size of the transition tables for each state and is not

dependent on the size of the DFA. For our largest DFA

Scale 34 with 305,339 states, the total Bitweaving opti-

mization time on TS, TS+TC2, and TS+TC4 is 10 hrs, 5

hrs, and 2.5 hrs. These times are not cumulative and fall

by a factor of 2 as each table consolidation step cuts the

number of DFA states by a factor of 2.

7.3 Results on 7-var-stride DFAs

We consider two implementations of variable striding

assuming we have a 2.36 megabit TCAM with TCAM

width 72 bits (32,768 entries). Using Table 1, the latency

of a lookup is 2.57 ns. Thus, the potential RE matching

throughput of by a 7-var-stride DFA with average stride

S is 8× S/.00000000257 = 3.11× S Gbps.

In our first implementation, we only use self-loop un-

rolling of root states in the deferment forest. Specifically,

for each RE set, we first construct the 1-stride DFA using

transition sharing. We then apply self-loop unrolling to

each root state of the deferment forest to create a 7-var-

stride transition table. In all cases, the increase in size

due to self-loop unrolling is tiny. The bigger issue was

that the TCAM width doubled from 36 bits to 72 bits.

We can decrease the TCAM space by using table con-

solidation; this was very effective for all RE sets except

the string matching RE sets Bro217 and C613. This was

only necessary for Snort31. All other self-loop unrolled

tables fit within our available TCAM space.

Second, we apply full variable striding. Specifically,

we first create 1-stride DFAs using transition sharing and

then apply variable striding with no table consolidation,

table consolidation with 2-decision tables, and table con-

solidation with 4-decision tables. We use the best result

that fits within the 2.36 megabit TCAM space. For the

RE sets Bro217, C8, C613, Snort24 and Snort34, no ta-

ble consolidation is used. For C10 and Snort31, we use

table consolidation with 2-decision tables. For C7, we

use table consolidation with 4-decision tables.

We now run both implementations of our 7-var-stride

DFAs on traces of length 287484 to compute the aver-

age stride. For each RE set, we generate 4 traces using

Becchi et al.’s trace generator tool using default values

35%, 55%, 75%, and 95% for the parameter pM . These

generate increasingly malicious traffic that is more likely

to move away from the start state towards distant accept

states of that DFA. We also generate a completely ran-

dom string to model completely uniform traffic such as

binary traffic patterns which we treat as pM = 0.

We group the 8 RE sets into 3 groups: group (a) repre-

sents the two string matching RE sets Bro217 and C613;

group (b) represents the three RE sets C7, C8, and C10

that contain all wildcard closures; group (c) represents

the three RE sets Snort24, Snort31, and Snort34 that con-

tain roughly 40% wildcard closures. Fig. 11 shows the

average stride length and throughput for the three groups

of RE sets according to the parameter pM (the random

string trace is pM = 0).

We make the following observations. (1) Self-loop un-

rolling is extremely effective on the uniform trace. For

the non string matching sets, it achieves an average stride

length of 5.97 and 5.84 and RE matching throughputs
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Figure 11: The throughput and average stride length of

RE sets.

of 18.58 and 18.15 Gbps for groups (b) and (c), re-

spectively. For the string matching sets in group (a), it

achieves an average stride length of 3.30 and a result-

ing throughput of 10.29 Gbps. Even though only the

root states are unrolled, self-loop unrolling works very

well because the non-root states that defer most transi-

tions to a root state will still benefit from that root state’s

unrolled self-loops. In particular, it is likely that there

will be long stretches of the input stream that repeatedly

return to a root state and take full advantage of the un-

rolled self-loops. (2) The performance of self-loop un-

rolling does degrade steadily as pM increases for all RE

sets except those in group (b). This occurs because as

pM increases, we are more likely to move away from

any default root state. Thus, fewer transitions will be

able to leverage the unrolled self-loops at root states. (3)

For the uniform trace, full variable striding does little

to increase RE matching throughput. Of course, for the

non-string matching RE sets, there was little room for

improvement. (4) As pM increases, full variable strid-

ing does significantly increase throughput, particularly

for groups (b) and (c). For example, for groups (b) and

(c), the minimum average stride length is 2.91 for all

values of pM which leads to a minimum throughput of

9.06Gbps. Also, for all groups of RE sets, the aver-

age stride length for full variable striding is much higher

than that for self-loop unrolling for large pM . For ex-

ample, when pM = 95%, full variable striding achieves

average stride lengths of 2.55, 2.97, and 3.07 for groups

(a), (b), and (c), respectively, whereas self-loop unrolling

achieves average stride lengths of only 1.04, 1.83, and

1.06 for groups (a), (b), and (c), respectively.

These results indicate the following. First, self-loop

unrolling is extremely effective at increasing throughput

for random traffic traces. Second, other variable striding

techniques can mitigate many of the effects of malicious

traffic that lead away from the start state.

8 Conclusions

We make four key contributions in this paper. (1) We

propose the first TCAM-based RE matching solution.

We prove that this unexplored direction not only works

but also works well. (2) We propose two fundamental

techniques, transition sharing and table consolidation, to

minimize TCAM space. (3) We propose variable striding

to speed up RE matching while carefully controlling the

corresponding increase in memory. (4) We implemented

our techniques and conducted experiments on real-world

RE sets. We show that small TCAMs are capable of stor-

ing large DFAs. For example, in our experiments, we

were able to store a DFA with 25K states in a 0.5Mb

TCAM chip; most DFAs require at most 1 TCAM entry

per DFA state. With variable striding, we show that a

throughput of up to 18.6 Gbps is possible.
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