
Diverse Firewall Design
Alex X. Liu, Member, IEEE, and Mohamed G. Gouda, Member, IEEE

Abstract—Firewalls are the mainstay of enterprise security and the most widely adopted technology for protecting private networks.
An error in a firewall policy either creates security holes that will allow malicious traffic to sneak into a private network or blocks
legitimate traffic and disrupts normal business processes, which, in turn, could lead to irreparable, if not tragic, consequences. It has
been observed that most firewall policies on the Internet are poorly designed and have many errors. Therefore, how one can design
firewall policies correctly is an important issue. In this paper, we propose the method of diverse firewall design, which consists of
three phases: a design phase, a comparison phase, and a resolution phase. In the design phase, the same requirement specification
of a firewall policy is given to multiple teams who proceed independently to design different versions of the firewall policy. In the
comparison phase, the resulting multiple versions are compared with each other to detect all functional discrepancies between them.
In the resolution phase, all discrepancies are resolved, and a firewall that is agreed upon by all teams is generated. The major technical
challenge in the method of diverse firewall design is how one can discover all functional discrepancies between two given firewall
policies. We present a series of three efficient algorithms for solving this problem: a construction algorithm, a shaping algorithm, and a
comparison algorithm. The algorithms for discovering all functional discrepancies between two given firewall policies can be used to
perform firewall policy change impact analysis as well. Firewall policies often need to be changed, as networks evolve, and new threats
emerge. Many firewall policy errors are caused by the unintended side effects of policy changes. Our algorithms can be used directly to
compute the impact of firewall policy changes by computing the functional discrepancies between the policy before changes and the
policy after changes.

Index Terms—Firewall policy, policy design, design diversity, change impact analysis, network security.

˙

1 INTRODUCTION

FIREWALLS are crucial elements in network security, and
they have been widely deployed to secure private

networks in businesses and institutions. A firewall is a
security guard placed at the point of entry between a
private network and the outside Internet such that all
incoming and outgoing packets have to pass through it. A
packet can be viewed as a tuple with a finite number of
fields such as source IP address, destination IP address,
source port number, destination port number, and protocol
type. By examining the values of these fields for incoming
and outgoing packets, a firewall accepts legitimate packets
and discards illegitimate ones according to its “policy,” that
is, “configuration.”

A firewall policy consists of a sequence (that is, an
ordered list) of rules, where each rule is of the form
hpredicatei ! hdecisioni. The hpredicatei of a rule is a
Boolean expression over some packet fields such as source
IP address, destination IP address, source port number,
destination port number, and protocol type. The hdecisioni of
a rule can be accept, discard, or a combination of these
decisions with other options such as a logging option. The
rules in a firewall policy often conflict. To resolve such
conflicts, the decision for each packet is the decision of the
first (that is, the highest priority) rule that the packet matches.

1.1 Motivation
Although a firewall policy is a mere sequence of rules,
correctly designing one is, by no means, easy. The rules in a
firewall policy are logically entangled because of conflicts
among rules and the resulting order sensitivity [26].
Ordering the rules correctly in a firewall is critical yet
difficult. The implication of any rule in a firewall cannot be
understood correctly without examining all the rules listed
above that rule. Furthermore, a firewall policy may consist
of a large number of rules. A firewall on the Internet may
consist of hundreds or even a few thousand rules in
extreme cases. One can imagine the complexity of the logic
underlying so many conflicting rules.

An error in a firewall policy, that is, a wrong definition of
being legitimate or illegitimate for some packets, means that
the firewall either accepts some malicious packets, which
consequently creates security holes in the firewall, or
discards some legitimate packets, which consequently
disrupts normal business. Either case could cause irrepar-
able, if not tragic, consequences. Given the importance of
firewalls, such errors are not acceptable. Unfortunately, it
has been observed that most firewalls on the Internet are
poorly designed and have many errors in their policies [26].
Therefore, how one can design firewall policies correctly is
an important issue.

Since the correctness of a firewall policy is the focus of
this paper, we assume that a firewall is correct if and only if
its policy is correct and a firewall policy is correct if and
only if it satisfies its given requirement specification, which
is usually written in a natural language. In the rest of this
paper, we use the term “firewall” to mean “firewall policy”
or “firewall configuration,” unless otherwise specified.

We categorize firewall errors into specification-induced
errors and design-induced errors. Specification-induced

IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2008 1237

. A.X. Liu is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824-1226.
E-mail: alexliu@cse.msu.edu.

. M.G. Gouda is with the Department of Computer Sciences, The University
of Texas at Austin, 1 University Station (C0500), Austin, TX 78712-0233.
E-mail: gouda@cs.utexas.edu.

Manuscript received 12 Apr. 2007; revised 9 Aug. 2007; accepted 22 Oct.
2007; published online 1 Nov. 2007.
Recommended for acceptance by T. Abdelzaher.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-04-0110.
Digital Object Identifier no. 10.1109/TPDS.2007.70802.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 22:57 from IEEE Xplore. Restrictions apply.

errors are caused by the inherent ambiguities of informal
requirement specifications, especially if the requirement
specification is written in a natural language. Design-
induced errors are caused by the technical incapacity of
individual firewall designers. Different designers may have
different understandings of the same informal requirement
specification, and different designers may exhibit different
technical strengths and weaknesses. Note that in this paper,
we assume that the given requirement specification of a
firewall is informal. Automatically converting a formal
firewall specification to a deployable firewall policy has
been addressed in [12]. However, the formal specification of a
firewall policy is still difficult to specify correctly. The above
observations motivate our method of diverse firewall design.

1.2 Our Solution
Our diverse firewall design method has the following
phases:

1. Design phase. In this phase, the same requirement
specification of a firewall is given to multiple teams
who proceed independently to design different
versions of the firewall. In the industry, firewalls
are typically designed and maintained by a group of
people rather than just one person. To apply the
method of diverse firewall design, we can divide
one group into several teams.

2. Comparison phase. In this phase, the resulting multi-
ple versions are compared with each other to
determine all functional discrepancies among them.
The functional discrepancies need to be presented in
human readable format in order to be used in the
next step.

3. Resolution phase. In this phase, first, every discre-
pancy is discussed and resolved by all teams.
Second, a firewall that is unanimously agreed upon
by all teams is generated.

The major technical challenge in the method of diverse
firewall design is how one can discover all functional
discrepancies between two given firewalls in human read-
able format. Our solution to this problem consists of a series of
three efficient algorithms for solving this problem: a con-
struction algorithm, a shaping algorithm, and a comparison
algorithm.

After all functional discrepancies are computed, the
teams need to discuss the correct decision for each
discrepancy. After all discrepancies are resolved, the
technical question that we need to answer is: How do we
generate the final firewall that reflects the resolved
functional discrepancies? We present two methods for this
purpose in Section 6.

1.3 Other Applications: Firewall Change
Impact Analysis

The algorithms presented in this paper can be used in other
applications as well, such as firewall change impact
analysis. Firewall policies are always subject to change
due to a variety of reasons. Making policy changes is a
major routine task for firewall administrators. For example,
new network threats such as worms and viruses may
emerge. To protect a private network from new attacks,
firewall policies need to be changed accordingly. Modern
organizations also continually transform their network

infrastructure to maintain their competitive edge by adding
new servers, installing new software and services, expand-
ing connectivity, etc. In accordance with network changes,
firewall policies need to be changed as well to provide
necessary protection.

Unfortunately, making changes is a major source of
firewall policy errors. Making correct firewall policy changes
is remarkably difficult due to the interleaving nature of
firewall rules. For example, when a firewall administrator
inserts a new rule to a firewall policy, the meaning of the
rules listed under this rule could be incorrectly changed,
without the administrator noticing. Furthermore, firewall
policy changes are made by human administrators, and it is
common that human administrators make mistakes. It has
been shown that administrator errors are the largest cause of
failure for Internet services, and policy errors are the largest
category of administrator errors [21].

The algorithms for discovering all functional discrepan-
cies between two given firewalls can be directly used to
perform firewall change impact analysis. The impact of the
changes can literally be defined as the functional discre-
pancies between the firewall before changes and the
firewall after changes.

1.4 Relationship to Prior Art
Some firewall design and analysis methods have been
proposed previously [1], [5], [11], [12], [15], [19], [20], [29].
However, none of them has ever explored design diversity.
Furthermore, none of them has ever tackled the problem of
change impact analysis for firewall policies. The proposed
diverse firewall design method is complementary to the
previous work, because these methods can assist each
individual team to design and analyze their firewall in the
design phase before cross comparison.

Note that the scope of this paper is on firewalls
and not Intrusion Detection Systems/Prevention Systems
(IDSs/IPSs). Although the distinction between IDSs/IPSs
and firewalls is blurry sometimes in the commercial
world, IDSs/IPSs fundamentally differ from firewalls in that
IDSs/IPSs check packet payloads, whereas firewalls do not.

1.5 Key Contributions
We make four key contributions in this paper:

1. We propose the method of diverse firewall design.
This paper represents the first effort to apply the
well-known principle of diverse design to firewalls.

2. We present a method that can compare two given
firewalls and output all functional discrepancies
between them in human readable format. This is the
first method created for this purpose.

3. We present a method to compute firewall change
impacts by computing all functional discrepancies
between the firewalls before and after changes. This
is the first method for doing firewall change impact
analysis.

4. We implemented our algorithms in Java, and we
evaluated their performance on both real-life and
synthetic firewalls of large sizes. The experimental
results show that our algorithms only use a few
seconds to compare two different firewalls, where
each firewall has up to 3,000 rules.

1238 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2008

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 22:57 from IEEE Xplore. Restrictions apply.

The rest of this paper is organized as follows: We start
with an overview of our diverse firewall design method in
Section 2. In Sections 3, 4, and 5, we present a series of
three algorithms for discovering all functional discrepancies
between two firewalls. In Section 6, we discuss how we can
generate a firewall that is agreed upon by all teams after all
discrepancies are resolved. We discuss some further issues
in Section 7. In Section 8, we present the experimental
results that show the effectiveness and efficiency of our
diverse firewall design method. Our conclusions are given
in Section 10.

2 OVERVIEW

In this section, we present an overview of our diverse
firewall design method by using an illustrative example,
which will be used throughout this paper.

In our example, for simplicity, we assume that a firewall
maps every packet to either decision: accept or discard.
Most firewall software supports more than two decisions
such as accept, accept and log, discard, and discard and log.
Our diverse firewall design method can support any
number of decisions.

2.1 Design Multiple Firewalls
Consider the simple network in Fig. 1. This network has a
gateway router with two interfaces: interface 0, which
connects the gateway router to the outside Internet, and
interface 1, which connects the gateway router to the inside
local network. The firewall for this local network resides in
the gateway router.

Suppose that the requirement specification for this
firewall is given as follows: The mail server with IP address

192.168.0.1 can receive e-mail packets. The packets from an
outside malicious domain 224.168.0.0/16 should be blocked. Other
packets should be accepted and allowed to proceed.

Suppose that we give this specification to two teams
—Team A and Team B—which design the firewalls, as shown
in Tables 1 and 2, respectively.

2.2 Compare Multiple Firewalls
Next, we briefly show our method for computing the
functional discrepancies between two given firewalls.
For example, given the two firewalls in Tables 1 and 2,
our method produces all the functional discrepancies, as
shown in Table 3.

The core data structure used in this paper for comparing
multiple firewalls is Firewall Decision Diagrams (FDDs).
FDDs were introduced in [10] as a notation for specifying
firewalls. An FDD with a decision set DS and over fields
F1; � � � ; Fd is an acyclic and directed graph that has the
following properties:

1. There is exactly one node that has no incoming
edges. This node is called the root. The nodes that
have no outgoing edges are called terminal nodes.

2. Each node v has a label, denoted F ðvÞ, such that

F ðvÞ 2 fF1; � � � ; Fdg; if v is a nonterminal node;
DS; if v is a terminal node:

�

3. Each edge e : u ! v is labeled with a nonempty set of
integers, denoted IðeÞ, where IðeÞ is a subset of the
domain of u’s label (that is, IðeÞ � DðF ðuÞÞ).

4. A directed path from the root to a terminal node is
called a decision path. No two nodes on a decision
path have the same label.

5. The set of all outgoing edges of a node v,
denoted EðvÞ, satisfies the following conditions:

. Consistency. IðeÞ \ Iðe0Þ … ; for any two distinct
edges e and e0 in EðvÞ.

. Completeness.
S

e2EðvÞ IðeÞ … DðF ðvÞÞ.
A decision path in an FDD f is represented by

v1e1 � � � vkekvkþ1, where v1 is the root, vkþ1 is a terminal

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 1239

Fig. 1. A firewall.

TABLE 1
Firewall Designed by Team A

TABLE 2
Firewall Designed by Team B

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 22:57 from IEEE Xplore. Restrictions apply.

node, and each ei is a directed edge from node vi to
node viþ1. A decision path ðv1e1 � � � vkekvkþ1Þ in an FDD
defines the following rule:

F1 2 S1 ^ � � � ^ Fn 2 Sn ! F ðvkþ1Þ;

where

Si …

IðejÞ; if there is a node vj in the decision
path that is labeled with field Fi;

DðFiÞ; if no node in the decision path is
labeled with field Fi:

8
>><

>>:

For an FDD f , we use f:rules to denote the set of all rules
that are defined by all the decision paths of f . For any packet p,
there is only one rule in f:rules that p matches because of
the consistency and completeness properties of an FDD.

Our method for computing the functional discrepancies
between two given firewalls consists of the following steps:

Step 1: conversion. In this step, we convert each firewall
to an equivalent FDD. Figs. 2 and 3 show the two FDDs that
are converted from the two firewalls in Tables 1 and 2,
respectively. Note that the example FDDs used in this paper
are presented as trees for ease of understanding. The
algorithm for constructing an equivalent FDD from a
sequence of rules is presented in Section 3.

In this example, we suppose that each packet has the
following fields:

1. interface,
2. source IP address,
3. destination IP address,
4. destination port, and
5. protocol type.

For ease of presentation, we assume that each packet has a
field called “interface,” whose value is the identification of
the network interface on which a packet arrives. The

shorthand for the five packet fields is listed in the following
table, and for simplicity, we assume that the protocol type
value in a packet is either 0 (TCP) or 1 (UDP):

In our examples, we also use the following shorthand.
Note that � denotes the integer formed by 4 bytes of the
IP address 224.168.0.0. This applies similarly for � and �:

Step 2: shaping. In this step, we transform each FDD
into another FDD without changing its semantics such that
the two resulting FDDs are semi-isomorphic. Two FDDs are
semi-isomorphic if and only if they are exactly the same,
except for the labels of their terminal nodes. Figs. 4 and 5
show the two semi-isomorphic FDDs converted from the
FDDs in Figs. 2 and 3, respectively. The algorithm for
making two FDDs semi-isomorphic without changing their
semantics is presented in Section 4.

Step 3: comparison. In this step, we compare the
two semi-isomorphic FDDs in Figs. 4 and 5 for functional
discrepancies. Table 3 shows all the functional discrepan-
cies between the two semi-isomorphic FDDs in Figs. 4 and
5, which are also the functional discrepancies between the
two firewalls in Tables 1 and 2. The algorithm for

1240 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2008

TABLE 3
Functional Discrepancies between the Two Firewalls Designed by Teams A and B

Fig. 2. The FDD constructed from the firewall designed by Team A in
Table 1.

Fig. 3. The FDD constructed from the firewall designed by Team B in
Table 2.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 22:57 from IEEE Xplore. Restrictions apply.

discovering all functional discrepancies between two semi-
isomorphic FDDs is presented in Section 5.

3 CONSTRUCTION ALGORITHM

In this section, we discuss how we can construct an
equivalent FDD from a sequence of rules.

3.1 Firewalls
We first formally define the concepts of fields, packets, and
firewalls. A field Fi is a variable whose domain, denoted
DðFiÞ, is a finite interval of nonnegative integers. For
example, the domain of the source address in an IP packet
is ‰0; 232 � 1�. A packet over the d fields F1; � � � ; Fd is a
d-tuple ðp1; � � � ; pdÞ, where each pi ð1 � i � dÞ is an element
of DðFiÞ. We use � to denote the set of all packets over
fields F1; � � � ; Fd. It follows that � is a finite set and
j�j … jDðF1Þj � � � � � jDðFdÞj, where j�j denotes the number
of elements in set �, and jDðFiÞj denotes the number of
elements in set DðFiÞ for each i.

A firewall rule has the form hpredicatei ! hdecisioni. A
hpredicatei defines a set of packets over the fields F1
through Fd specified as F1 2 S1 ^ � � � ^ Fd 2 Sd, where each
Si is a nonempty interval that is a subset of DðFiÞ. If
Si … DðFiÞ, we can replace Fi 2 Si by Fi 2 all or remove the
conjunct Fi 2 DðFiÞ altogether. A packet p1; � � � ; pd matches a
predicate F1 2 S1 ^ � � � ^ Fd 2 Sd and the corresponding
rule if and only if the condition p1 2 S1 ^ � � � ^ pd 2 Sd
holds. We use � to denote the set of possible values that
hdecisioni can be. Typical elements of � include accept,
discard, accept with logging, and discard with logging.
A firewall rule F1 2 S1 ^ � � � ^ Fd 2 Sd ! hdecisioni is simple
if and only if every Si ð1 � i � dÞ is an interval of
consecutive nonnegative integers.

A firewall f over the d fields F1; � � � ; Fd is a sequence
of firewall rules. The size of f , denoted jfj, is the number
of rules in F . A sequence of rules hr1; � � � ; rni is
comprehensive if and only if for any packet p, there is at
least one rule in the sequence that p matches. A sequence
of rules needs to be comprehensive for it to serve as a
firewall. To ensure that a firewall is comprehensive, the

LIU AND GOUDA: DIVERSE FIREWALL DESIGN 1241

Fig. 4. The FDD transformed from the one in Fig. 2.

Fig. 5. The FDD transformed from the one in Fig. 3.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 22:57 from IEEE Xplore. Restrictions apply.

