
Collaborative Enforcement of Firewall Policies in

Virtual Private Networks

Alex X. Liu Fei Chen
Dept. of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824-1266, U.S.A.

{alexliu, feichen}@cse.msu.edu

ABSTRACT

The widely deployed Virtual Private Network (VPN) tech-
nology allows roaming users to build an encrypted tunnel
to a VPN server, which henceforth allows roaming users to
access some resources as if that computer is residing on their
home organization’s network. Although the VPN technol-
ogy is very useful, it imposes security threats to the remote
network because their firewall does not know what traffic is
flowing inside the VPN tunnel. To address this issue, we pro-
pose VGuard, a framework that allows a policy owner and a
request owner to collaboratively determine whether the re-
quest satisfies the policy without the policy owner knowing
the request and the request owner knowing the policy. We
first present an efficient protocol, called Xhash, for oblivious
comparison, which allows two parties, where each party has
a number, to compare whether they have the same num-
ber, without disclosing their numbers to each other. Then,
we present the VGuard framework that uses Xhash as the
basic building block. The basic idea of VGuard is to first
convert a firewall policy to non-overlapping numerical rules
and then use Xhash to check whether a request matches a
rule. Comparing with the Cross-Domain Cooperative Fire-
wall (CDCF) framework, which represents the state-of-the-
art, VGuard is not only more secure but also orders of mag-
nitude more efficient. On real-life firewall policies, for pro-
cessing packets, our experimental results show that VGuard
is 552 times faster than CDCF on one party and 5035 times
faster than CDCF on the other party.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Algorithms, Security

Keywords

virtual private networks, privacy preserving, oblivious com-
parison, Xhash protocol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

1. INTRODUCTION

Virtual Private Network (VPN) is a widely deployed tech-
nology that allows roaming users to securely use a remote
computer on the public Internet as if that computer is resid-
ing on their organization’s network, which henceforth allows
roaming users to access some resources that are only accessi-
ble from their organization’s network. VPN works in the fol-
lowing manner. Suppose IBM sends a field representative to
one of its customers, say Michigan State University (MSU).
Assume that MSU’s IP addresses range 1.1.0.0 ∼ 1.1.255.255
and IBM’s IP addresses range 2.2.0.0 ∼ 2.2.255.255. To ac-
cess resources (say a confidential customer database server
with IP address 2.2.0.2) that are only accessible within IBM’s
network, the IBM representative uses an MSU computer (or
his laptop) with an MSU IP address (say 1.1.0.10) to es-
tablish a secure VPN tunnel to the VPN server (with IP
address 2.2.0.1) in IBM’s network. Upon establishing the
VPN tunnel, the IBM representative’s computer is tem-
porarily assigned a virtual IBM IP address (say 2.2.0.25).
Using the VPN tunnel, the IBM representative can access
any computer on the Internet as if his computer is residing
on IBM’s network with IP address 2.2.0.25. The payload of
each packet inside the VPN tunnel is another packet (to or
from the newly assigned IBM IP address 2.2.0.25), which is
typically encrypted. Figure 1 illustrates an example packet
that traverses from the IBM representative’s computer on
MSU’s network to the customer database server in IBM’s
network.

IBM

Representative

Firewall VPN Server

Confidential

Database

www.malicious.com
1.1.0.0/16 2.2.0.0/16

2.2.0.1

1.1.0.10

2.2.0.25
2.2.0.2

Packet header

Encrypted

packet payload

Packet header

Packet payload

Src IP: 2.2.0.25

Dst IP: 2.2.0.2

Src IP: 1.1.0.10

Dst IP: 2.2.0.1

Src IP: 2.2.0.25

Dst IP: 2.2.0.2

Figure 1: A typical example

While the VPN tunnel is very useful for the IBM represen-
tative, it imposes security threats to MSU’s network because
MSU’s firewall does not know what traffic is flowing inside
the VPN tunnel. For example, if MSU’s firewall blocks ac-
cess to a remote site (say www.malicious.com) or disallows
machines to run peer-to-peer applications due to copyright

95

concerns, MSU’s firewall cannot enforce its policies on the
IBM representative’s computer although that computer is
physically on MSU’s network. Basically, the VPN tunnel
opens a hole to MSU’s firewall that may allow unwanted
traffic to flow inside or outside. Having such a hole is re-
markably dangerous because viruses or worms could flood
in through it to the IBM representative’s computer first and
then further spread to other computers on MSU’s network.

This problem is conceivably difficult to solve for many rea-
sons. First, MSU cannot simply block VPN connections be-
cause otherwise the IBM representative may fail to perform
his duties. Second, MSU cannot share its firewall policy with
IBM. It is common in practice that firewall policies are kept
confidential due to security and privacy concerns. Know-
ing the firewall policy of a network could enable attackers
to easily spot the security holes in the policy and launch
corresponding attacks. A firewall policy also reveals the IP
addresses of important servers, which are usually kept confi-
dential to reduce the chance of being attacked. Furthermore,
from a firewall policy one may be able to derive the business
relationship of the organization with their partners. Third,
IBM cannot share the traffic in its VPN tunnel with MSU
due to security and privacy concerns. For example, IBM
may want to keep the IP address of its customer database
server confidential to reduce the likelihood of being attacked.
One main purpose of VPN is to achieve such confidentiality.

The fundamental problem in the above application is:
how can we collaboratively enforce firewall policies in a pri-
vacy preserving manner for VPN tunnels in an open dis-
tributed environment? A satisfactory solution to this prob-
lem should meet the following three requirements: (1) The
request owner cannot gain any more knowledge on the policy
after any number of runs of the protocol than they would by
brute force probing of the policy. We refer to this require-
ment as policy privacy. (2) It should be computationally
infeasible for the policy owner to figure out a request. We
refer to this requirement as request privacy. (3) The over-
head of the solution should be marginal. Timely processing
of every request (or packet) is critical for distributed applica-
tions. We refer to this requirement as protocol efficiency. In
addition to the above three requirements on policy privacy,
request privacy, and protocol efficiency, a desirable solution
should not require a trusted third party; otherwise, the so-
lution will be difficult to deploy. Throughout this paper,
we use “MSU” to represent the policy owner and “IBM” to
represent the request owner.

Although this is a fundamentally important problem, it
is largely underinvestigated. The state-of-the-art on this
problem is the seminal work in [3], where Cheng et al. pro-
posed a scheme called CDCF. However, CDCF is vulnera-
ble to selective policy updating attacks, by which the policy
owner can quickly figure out the request of the other party.
Furthermore, CDCF is inefficient because it uses commuta-
tive encryption functions (such as the Pohlig-Hellman Ex-
ponentiation Cipher [12] and Secure RPC Authentication
(SRA) [13]), which are extremely expensive in nature, as
the core cryptography primitive.

In this paper, we present VGuard, a secure and efficient
framework for collaborative enforcement of firewall policies.
In VGuard, different from CDCF, the policy owner does not
know which rule matches which request; thus, it makes the
selective policy updating attacks infeasible. Furthermore,
unlike CDCF, VGuard obfuscates rule decisions, which pre-

vents MSU from knowing the decision for the given packet.
To make VGaurd efficient, we propose a new oblivious com-
parison scheme, called Xhash, which uses XOR and secure
hash functions. Xhash is three orders of magnitude faster
than the commutative encryption scheme used in CDCF.
Moreover, VGuard uses decision diagrams to process pack-
ets, which is much faster than the linear search used in
CDCF. By side by side comparison, our experimental results
show that VGuard is hundreds times faster than CDCF in
processing packets.

We make the following three key contributions in this pa-
per. First, we propose Xhash, a very efficient oblivious com-
parison scheme that simply uses XOR and secure hash func-
tions. Second, we propose VGuard, a privacy preserving
framework for collaborative enforcement of firewall policies.
Third, we implement both VGuard and CDCF and perform
extensive experiments to evaluate their performance.

The rest of the paper proceeds as follows. We first intro-
duce our assumptions and threat model in Section 2. We
then introduce firewall policies in Section 3. In Section 4,
we present our protocol Xhash for oblivious comparison. In
Sections 5 and 6, we present the bootstrapping and filtering
protocols. We discuss remaining issues in Section 7. We
review related work in Section 8. Our experimental results
are in Section 9. Finally, we give conclusions in Section 10.

2. ASSUMPTIONS AND THREAT MODEL

Assumptions: First, we assume that the two parties of
policy owner and request owner follow the preestablished
collaborative enforcement protocol. In particular, the en-
forcement party does enforce the decision made by the other
party. For example, we assume that IBM correctly enforces
the decisions made by MSU. This assumption can be real-
ized by the service level agreement between MSU and IBM.
Second, we assume that the policy owner may try to figure
out the request without violating the protocol and similarly
the request owner may try to figure out the policy with-
out violating the protocol. Third, we assume that between
two collaborating parties there exists secure channels, which
could be achieved using protocols such as SSL.

Threat Model: Without violating the preestablished
collaborative enforcement protocol, we assume that the pol-
icy owner may attempt to break the request and the request
owner may attempt to break the policy.

3. BACKGROUND

We first formally define the concepts of fields, packets,
and firewalls. A field Fi is a variable of finite length (i.e.,
of a finite number of bits). The domain of field Fi of w

bits, denoted D(Fi), is [0, 2w −1]. A packet over the d fields
F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each pi (1 ≤ i ≤ d)
is an element of D(Fi). Firewalls usually check the following
five fields: source IP address, destination IP address, source
port number, destination port number, and protocol type.
The lengths of these packet fields are 32, 32, 16, 16, and
8 respectively. We use Σ to denote the set of all packets
over fields F1, · · · , Fd. It follows that Σ is a finite set and
|Σ| = |D(F1)| × · · · × |D(Fd)|, where |Σ| denotes the num-
ber of elements in set Σ and |D(Fi)| denotes the number of
elements in set D(Fi).

A rule has the form 〈predicate〉 → 〈decision〉. A 〈predicate〉
defines a set of packets over the fields F1 through Fd, and is
specified as F1 ∈ S1∧· · ·∧Fd ∈ Sd where each Si is a subset
of D(Fi) and is specified as either a prefix or a range. A pre-

96

fix {0, 1}k{∗}w−k with k leading 0s or 1s for a packet field of
length w denotes the range [{0, 1}k{0}w−k , {0, 1}k{1}w−k].
For example, prefix 01** denotes the range [0100, 0111]. A
rule F1 ∈ S1∧· · ·∧Fd ∈ Sd → 〈decision〉 is a prefix rule if and
only if each Si is represented as a prefix. In firewall rules,
source IP addresses, destination IP addresses, and protocol
types are typically specified as prefixes, and source ports and
destination ports are typically specified as ranges. A packet
(p1, · · · , pd) matches a predicate F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd

and the corresponding rule if and only if the condition p1 ∈
S1 ∧ · · · ∧ pd ∈ Sd holds. For firewalls, the typical decisions
include permit, deny, permit with logging, and deny with
logging. A rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is
called a singleton rule if and only if |Si| = 1 for every i.

A sequence of rules 〈r1, · · · , rn〉 is complete if and only if
for any packet p, there is at least one rule in the sequence
that p matches. To ensure that a sequence of rules is com-
plete and thus is a firewall, the predicate of the last rule is
usually specified as F1 ∈ D(F1) ∧ · · · ∧ Fd ∈ D(Fd). A fire-
wall is a sequence of rules that is complete. Two rules in a
firewall may overlap; that is, there exists at least one packet
that matches both rules. Furthermore, two rules in a fire-
wall may conflict; that is, the two rules not only overlap but
also have different decisions. Firewalls typically resolve con-
flicts by employing a first-match resolution strategy where
the decision for a packet p is the decision of the first (i.e.,
highest priority) rule that p matches in the firewall. Table
1 shows an example firewall. The format of these rules is
based upon the format used in Cisco Access Control Lists.

4. OBLIVIOUS COMPARISON

In this section, we consider the following oblivious compar-
ison problem. Suppose we have two parties, denoted MSU
and IBM, where each party has a private number, N1 and
N2 respectively. MSU and IBM want to compare whether
N1 = N2; however, no party wants to disclose its number to
the other. In case N1 6= N2, no party should learn the value
of the other party.

In this paper, we propose a simple and efficient protocol,
called Xhash, to achieve oblivious comparison. Xhash works
as follows. First, MSU and IBM each choose a secret key
K1 and K2 respectively. Second, MSU sends N1 ⊕ K1 to
IBM. Then, IBM computes HMAC k(N1 ⊕ K1 ⊕ K2) and
sends the result to MSU. Third, IBM sends N2⊕K2 to MSU.
Then, MSU computes HMAC k(N2⊕K2⊕K1) and compares
it with HMAC k(N1 ⊕ K1 ⊕ K2), which was received from
IBM. Finally, the condition N1 = N2 holds if and only if
HMAC k(N2 ⊕K2 ⊕K1) = HMAC k(N1 ⊕K1 ⊕K2). Figure
2 illustrates the Xhash protocol.

MSU IBM
N1 K1

HMACk(N1 K1 K2)

N2 K2
Check whether

HMACk(N1 K1 K2)

= HMACk(N2 K2 K1)

Figure 2: The Xhash protocol

The above function HMAC is a keyed-Hash Message Au-
thentication Code, such as HMAC-MD5 or HMAC-SHA1,
which satisfies one-wayness property (i.e., given HMACk(x),
it is computationally infeasible to compute x and k) and
the collision resistance property (i.e., it is computationally

infeasible to find two distinct numbers x and y such that
HMACk(x) = HMACk(y). Note that the key k is shared
between MSU and IBM. In this paper, we only consider
the cases that N1 and N2 are less than 38 bits. Although
hash collisions for HMAC do exist in theory, the probability
of collision is negligibly small in practice. Furthermore, by
properly choosing the shared key k, we can safely assume
that HMAC has no collision.

To prevent brute force attacks, we need to choose key K to
be sufficiently long. In our implementation, we choose K to
be 128 bits. Note that in our framework x is at most 38 bits.
To meet the length of K such that x can be XORed with
K, we first use a pseudo random generation function R to
generate x1 = R(x). Second, we apply R to x1 to generate
x2 = R(x1). Repeat this process until we can concatenate
x, x1, x2, · · · to form a bit string that meets the length of K.
Extra bits in the concatenation beyond the length of K are
discarded.

The correctness of Xhash follows from the commutative
property of XOR operation (i.e., x⊕K1⊕K2 = x⊕K2⊕K1)
and the one-wayness and collision resistance properties of
HMAC functions. Note that in the case that N1 = N2, MSU
can compute the secret key K2 of IBM because N2 ⊕ K2 ⊕
N2 = K2. However, in applying the above oblivious com-
parison scheme in VGuard, MSU compares N2 with many
numbers in a set and does not know which number is equal
to N2.

5. BOOTSTRAPPING PROTOCOL

In the bootstrapping protocol, MSU first converts its fire-
wall policy to a set of non-overlapping prefix rules. Second,
MSU converts each prefix to a number. Third, MSU applies
XOR operation to every number using its secret key K1.
Finally, MSU sends the anonymized policy to IBM. Then,
IBM further applies XOR and HMAC operations to every
number in the received policy using its secret key K2, ob-
fuscates the decision of each rule, and shuffle the resulting
rules. At last, IBM sends the resulting policy back to MSU.

Converting a firewall policy to a set of non-overlapping
prefix rules consists of four steps: FDD construction, range
conversion, prefix numericalization, and rule generation.

5.1 FDD Construction

In this step, MSU converts its firewall policy to an equiva-
lent Firewall Decision Diagram [6]. A Firewall Decision Di-
agram (FDD) with a decision set DS and over fields F1, · · · , Fd

is an acyclic and directed graph that has the following five
properties: (1) There is exactly one node that has no in-
coming edges. This node is called the root. The nodes that
have no outgoing edges are called terminal nodes. (2) Each
node v has a label, denoted F (v). If v is a nonterminal
node, then F (v) ∈ {F1, · · · , Fd}. If v is a terminal node,
then F (v) ∈ DS. (3) Each edge e:u → v is labeled with
a nonempty set of integers, denoted I(e), where I(e) is a
subset of the domain of u’s label (i.e., I(e) ⊆ D(F (u))). (4)
A directed path from the root to a terminal node is called
a decision path. No two nodes on a decision path have the
same label. (5) The set of all outgoing edges of a node
v, denoted E(v), satisfies the following two conditions: (a)
Consistency : I(e) ∩ I(e′) = ∅ for any two distinct edges e

and e′ in E(v). (b) Completeness:
⋃

e∈E(v) I(e) = D(F (v)).

Figure 3(a) shows an example firewall policy over two fields
F1 and F2, where the domain of each field is [0, 15]. The
FDD that is semantically equivalent to this firewall policy is

97

Rule Source IP Destination IP Source Port Destination Port Protocol Action
r1 1.2.*.* 192.168.0.1 * 25 TCP accept
r2 * * * * * discard

Table 1: An example firewall

shown in Figure 3(b). Note that in labeling terminal nodes,
we use “a” as a shorthand for “accept” (i.e., “permit”) and
“d”as a shorthand for “discard”(i.e., “deny”). The algorithm
for converting a firewall to an FDD is in [9].

5.2 Range Conversion

For every edge e in the FDD, MSU converts its label I(e)
to the minimum set of prefixes whose union is equal to I(e).
As one prefix can be converted to one range, a range may
have to be converted to multiple prefixes. In converting
a range to prefixes, we want to find the minimum set of
prefixes such that the union of the prefixes is equal to the
range. For example, given range [0001, 1110], the corre-
sponding minimum set of prefixes would be 0001, 001∗, 01 ∗
∗, 10 ∗ ∗, 110∗, 1110. The minimum number of prefixes for
representing an integer interval [a, b], where a and b are two
numbers of w bits, is at most 2w−2 [7]. We call such FDDs,
where each edge is labeled by a set of prefixes, prefix FDDs.
Figure 3(c) shows the prefix FDD converted from the FDD
in Figure 3(b).

5.3 Prefix Numericalization

In this step, MSU converts each prefix in the FDD to
a concrete number. This process is called prefix numeri-
calization. A prefix numericalization function f needs to
satisfy the following two properties: (1) for any prefix P ,
f(P) is a binary string; (2) for any two prefixes P1 and P2,
f(P1) = f(P2) if and only if P1 = P2. There are many
ways to do prefix numericalization. We use the following
scheme: Given a prefix b1b2 · · · bk ∗ · · · ∗ of w bits, we first
replace every * by 0; second, we append ⌈log (w + 1)⌉ bits
whose value is equal to k. For example, 101* is converted to
1010011. After prefix numericalization, the FDD in Figure
3(c) becomes the one in Figure 3(d).

5.4 Applying XOR by MSU

After prefix numericalization, MSU applies XOR to ev-
ery number in the numericalized FDD using its secret key
K1. Figure 3(e) shows the numericalized and XORed FDD.
Then MSU generates non-overlapping rules from the numer-
icalized and XORed FDD. From each decision path in the
FDD, MSU generates a set of non-overlapping rules. For ex-
ample, from the left-most decision path in Figure 3(e), MSU
generates the following four non-overlapping rules:

F1 ∈ 0100010 ⊕ K1 ∧ F2 ∈ 0000010 ⊕ K1 → a,

F1 ∈ 0100010 ⊕ K1 ∧ F2 ∈ 0100011 ⊕ K1 → a,

F1 ∈ 1000010 ⊕ K1 ∧ F2 ∈ 0000010 ⊕ K1 → a,

F1 ∈ 1000010 ⊕ K1 ∧ F2 ∈ 0100011 ⊕ K1 → a,

Figure 3(f) shows the disjoint rules generated from the FDD
in Figure 3(e).

After non-overlapping rules are generated, MSU sends the
resulting policy to IBM. If MSU needs to prevent IBM from
knowing the number of non-overlapping prefix rules that
MSU’s firewall is converted to, MSU can randomly insert
some dummy rules formulated by out-of-range dummy num-
bers and random decisions into the set of non-overlapping
numerical rules before applying XOR. An out-of-range dummy
number is a number that corresponds to no prefix. For

 !

 !

 !

 !

1 2

1 2

1 2

1 2

4,11 [0,5]

0, 3 [2,7]

12,15 [2,7]

0,15 [0,15]

F F accept

F F accept

F F accept

F F discard

" # " $

" # " $

" # " $

" # " $

(a)

⇓ FDD construction

[4, 11] [0, 3]

F

a

1

F2 F2

d d

[0, 5]

a

[12, 15]

[6, 15] [2, 7]
[1, 1]

[8, 15]

(b)

⇓ Prefix FDD conversion

01**

F

a

1

F2 F2

d d

00**

a

011*
001* 000*

1***

10**
00**

11**

010* 1*** 01**

(c)

⇓ Prefix numericalization

F

a

1

F2 F2

d da

0100010

1000010
0000010

1100010

1000001

0000011
0100011

0000010 0110011

1000001

0010011

0100010

(d)

⇓ Applying XOR

F

a

1

F2 F2

d da

0100010 K1

1000010 K1

0000010 K1

0100011 K1

0010011 K1

0100010 K1

0110011 K1

1000001 K1

0000011 K1

1000001 K1

0000010 K1

1100010 K1

(e)

⇓ Non-overlapping rule generation

(0100010 K1, 0000010 K1) a (0000010 K1, 0010011 K1) a

(0100010 K1, 0100011 K1) a (0000010 K1, 0100010 K1) a

(1000010 K1, 0000010 K1) a (1100010 K1, 0010011 K1) a

(dummy1 K1, dummy2 K1) a (1100010 K1, 0100010 K1) a

(1000010 K1, 0100011 K1) a (0000010 K1, 0000011 K1) d

(0100010 K1, 0110011 K1) d (0000010 K1, 1000001 K1) d

(0100010 K1, 1000001 K1) d (dummy3 K1, dummy4 K1) d

(1000010 K1, 0110011 K1) d (1100010 K1, 0000011 K1) d

(1000010 K1, 1000001 K1) d (1100010 K1, 1000001 K1) d

(f)

Figure 3: Example of bootstrapping at MSU

example, according to our prefix numericalization scheme,
1011010 is malformed and does not correspond to any pre-
fix. Thus, no packet will match a dummy rule that consists
of at least one out-of-range dummy number. Fig 3(f) shows
the rules after this step. Note that it is optional for MSU
to insert dummy rules. As we will show in the experimental

98

(0100010 K1, 0000010 K1) a (0000010 K1, 0010011 K1) a

(0100010 K1, 0100011 K1) a (0000010 K1, 0100010 K1) a

(1000010 K1, 0000010 K1) a (1100010 K1, 0010011 K1) a

(dummy1 K1, dummy2 K1) a (1100010 K1, 0100010 K1) a

(1000010 K1, 0100011 K1) a (0000010 K1, 0000011 K1) d

(0100010 K1, 0110011 K1) d (0000010 K1, 1000001 K1) d

(0100010 K1, 1000001 K1) d (dummy3 K1, dummy4 K1) d

(1000010 K1, 0110011 K1) d (1100010 K1, 0000011 K1) d

(1000010 K1, 1000001 K1) d (1100010 K1, 1000001 K1) d

(a)

⇓ Applying XOR and HMAC

(h (0100010 K1 K2), h(0000010 K1 K2)) a

(h(0100010 K1 K2), h(0100011 K1 K2)) a

(h(000010 K1 K2), h(0000010 K1 K2)) a

(h(dummy1 K1 K2), h(dummy2 K1 K2)) a

(h(1000010 K1 K2), h(0100011 K1 K2)) a

(h(0100010 K1 K2), h(0110011 K1 K2)) d

(h(0100010 K1 K2), h(1000001 K1 K2)) d

(h(1000010 K1 K2), h(0110011 K1 K2)) d

(h(1000010 K1 K2), h(1000001 K1 K2)) d

(h(0000010 K1 K2), h(0010011 K1 K2)) a

(h(0000010 K1 K2), h(0100010 K1 K2)) a

(h(1100010 K1 K2), h(0010011 K1 K2)) a

(h(1100010 K1 K2), h(0100010 K1 K2)) a

(h(0000010 K1 K2), h(0000011 K1 K2)) d

(h(0000010 K1 K2), h(1000001 K1 K2)) d

(h(dummy3 K1 K2), h(dummy4 K1 K2)) d

(h(1100010 K1 K2), h(0000011 K1 K2)) d

(h(1100010 K1 K2), h(1000001 K1 K2)) d

(b)

⇓ Rule shuffling and decision obfuscation

(h(0100010 K1 K2), h(0000010 K1 K2)) d

(h(0100010 K1 K2), h(0100011 K1 K2)) d

(h(0100010 K1 K2), h(1000001 K1 K2)) a

(h(1000010 K1 K2), h(0110011 K1 K2)) a

(h(1000010 K1 K2), h(0100011 K1 K2)) d

(h(0100010 K1 K2), h(0110011 K1 K2)) a

(h(1000010 K1 K2), h(0000010 K1 K2)) d

(h(dummy1 K1 K2), h(dummy2 K1 K2)) d

(h(1000010 K1 K2), h(1000001 K1 K2)) a

(h(1100010 K1 K2), h(0100010 K1 K2)) d

(h(1100010 K1 K2), h(1000001 K1 K2)) a

(h(0000010 K1 K2), h(1000001 K1 K2)) a

(h(0000010 K1 K2), h(0010011 K1 K2)) d

(h(0000010 K1 K2), h(0000011 K1 K2)) a

(h(1100010 K1 K2), h(0010011 K1 K2)) d

(h(dummy3 K1 K2), h(dummy4 K1 K2)) a

(h(1100010 K1 K2), h(0000011 K1 K2)) a

(h(0000010 K1 K2), h(0100010 K1 K2)) d

(c)

Decision obfuscation table

a maps to d

d maps to a
(d)

Figure 4: Example of bootstrapping at IBM

results, the number of non-overlapping prefix rules that a
firewall is converted to far exceeds the number of original
rules. IBM knowing the number of converted rules is much
less a concern.

5.5 Applying XOR and HMAC by IBM

Upon receiving a sequence of non-overlapping numerical
rules from MSU, IBM further applies XOR and HMAC to
every number in the received policy using its secret key K2.
To destroy the correspondence between the rules after apply-
ing XOR and HMAC and the rules received from MSU, IBM
randomly shuffles the resulting rules after applying XOR
and HMAC. To prevent MSU from knowing the decision of
IBM’s packet, IBM obfuscates the decision of each rule by
mapping each decision to another distinct decision. More
formally, the decision obfuscation is a one-to-one mapping
function f from the set of all decisions to the same set of all
decisions. IBM stores the mapping function f in its deci-
sion obfuscation table and replaces the decision of each rule
in ri, say di, by f(di). To prevent MSU from statistically
discovering the obfuscation mapping function f , for any de-

cision di, IBM needs to ensure that the number of rules that
have decision di is the same. This can be easily achieved
by adding dummy rules. Due to the rule shuffling and de-
cision obfuscation, MSU cannot correlate the received rules
with the original rules, and also cannot identify the deci-
sion of each rule. Figure 4(b) shows the rules after IBM
applies XOR and HMAC, and Figure 4(c) shows the rules
after IBM shuffles rules and obfuscates decisions. The ob-
fuscation mapping function is shown in Figure 4(d). Note
that in these figures h denotes the HMAC function. Finally,
IBM sends the resulting rules back to MSU.

6. FILTERING PROTOCOL

(0101, 0011) (a)

⇓ Prefix family construction

0101 0011
010* 001*
01** 00**
0*** 0***
**** ****

(b)

⇓ Prefix numericalization

0101100 0011100
0100011 0010011
0100010 0000010
0000001 0000001
0000000 0000000

(c)

⇓ Applying XOR by IBM

0101100 ⊕ K2 0011100 ⊕ K2

0100011 ⊕ K2 0010011 ⊕ K2

0100010 ⊕ K2 0000010 ⊕ K2

0000001 ⊕ K2 0000001 ⊕ K2

0000000 ⊕ K2 0000000 ⊕ K2

(d)

⇓ Applying XOR and HMAC by MSU

h(0101100 ⊕ K2 ⊕ K1) h(0011100 ⊕ K2 ⊕ K1)
h(0100011 ⊕ K2 ⊕ K1) h(0010011 ⊕ K2 ⊕ K1)
h(0100010 ⊕ K2 ⊕ K1) h(0000010 ⊕ K2 ⊕ K1)
h(0000001 ⊕ K2 ⊕ K1) h(0000001 ⊕ K2 ⊕ K1)
h(0000000 ⊕ K2 ⊕ K1) h(0000000 ⊕ K2 ⊕ K1)

(e)

Figure 5: Example of packet preprocessing

In the filtering protocol, each time IBM receives a packet
originated from or sent to its representative, IBM first con-
verts the packet to prefixes and then further converts each
prefix to a number using the same prefix numericalization
scheme. Then, IBM applies XOR to every number in the
packet using its secret key K2 and sends the resulting packet
to MSU. MSU further applies XOR and HMAC to the re-
ceived packet, and searches the obfuscated decision for the
packet using the received firewall policy from IBM in the
bootstrapping protocol. Finally, MSU sends the obfuscated
decision to IBM and IBM finds the original decision using
its decision obfuscation table.

6.1 Address Translation

When the IBM VPN server sends (or receives) a packet
on behalf of its representative in MSU, the source (or desti-
nation) IP address of the packet is an IBM IP address that
the IBM VPN server assigned to the IBM representative’s
computer in MSU. To inquiry the decision for this packet
from MSU, IBM needs to replace the source (or destina-
tion) IP address in the packet by IBM representative’s MSU
IP address. Otherwise, it is likely that MSU firewall pol-
icy blocks all incoming packets that are not sent to MSU
and all outgoing packets that are not originated from MSU.
Take the example in Figure 1, the packet that IBM should
ask MSU for a decision has a source IP address 1.1.0.10 and
a destination IP address 2.2.0.2.

99

6.2 Prefix Membership Verification

We first define two new concepts: k−prefix and prefix
family. We call the prefix {0, 1}k{∗}w−k with k leading 0s
and 1s followed by w−k ∗s a k−prefix. If a value x matches
a k−prefix, the first k bits of x and the k−prefix are the
same. For example, if x ∈ 01 ∗ ∗ (i.e., x ∈ [0100, 0111]),
then the first two bits of x must be 01. Given a binary
number b1b2 · · · bw of w bits, the prefix family of this number
is the set of w + 1 prefixes {b1b2 · · · bw, b1b2 · · · bw−1∗, · · · ,
b1 ∗ · · · ∗, ∗ ∗ ...∗}, where the i-th prefix is b1b2 · · · bw−i+1 ∗
· · · ∗. We use PF (x) to represent the prefix family of x. For
example, PF (0101) = {0101, 010∗, 01∗∗, 0∗∗∗, ∗∗∗∗}. Based
on the above definitions, it is easy to draw the following
conclusion: given a number x and a prefix P , x ∈ P if and
only if P ∈ PF (x).

6.3 Packet Preprocessing by IBM

For each of the d fields of a packet, IBM first generates
its prefix family. Second, IBM converts each prefix to a
number using the same prefix numericalization scheme in the
bootstrapping protocol. Third, IBM applies XOR to each
number using its secret key K2. Last, IBM sends a sequence
of d sets of numbers, which corresponds to the d fields of the
packet, to MSU. For example, given a packet (0101, 0011)
as shown in Figure 5(a), the prefix family of each field is
shown in Figure 5(b). The result of prefix numericalization
is shown in Figure 5(c). The final 2 sequences of numbers
are shown in Figure 5(d).

6.4 Packet Processing by MSU

After MSU receives the packet as d sequences of num-
bers from IBM, MSU further applies XOR and HMAC using
its secret key K1. Because of the commutativity property
of Xhash, MSU can search the obfuscated decision for the
packet using the resulting firewall rules from the bootstrap-
ping protocol. Recall that each rule is represented as d num-
bers and an obfuscated decision. A packet (s1, s2, · · · , sd)
matches a rule (m1, m2, · · · , md) → 〈obfuscated decision〉 if
and only if the condition m1 ∈ s1 ∧ m2 ∈ s2 ∧ · · · ∧ md ∈
sd holds. Therefore, MSU can use linear search to find
the first rule that the packet matches. Then, MSU sends
the obfuscated decision to IBM and IBM finds the origi-
nal decision using its decision obfuscation table. Because
all the firewall rules resulted from the bootstrapping pro-
tocol are non-overlapping, there exists one and only one
rule that the packet matches. For example, given the re-
sulting firewall rules in Figure 4(c) and the preprocessed
packet in Figure 5(e), the only rule that matches the packet
is (h(0100010 ⊕ K2 ⊕ K1), h(0000010 ⊕ K2 ⊕ K1)) → d.

To improve search efficiency, MSU can use the following
two techniques: FDD and hash table. First, MSU converts
the non-overlapping rules resulted from the bootstrapping
protocol to an equivalent FDD. For example, Figure 6 shows
the FDD constructed from the firewall in Figure 4(c). Thus,
MSU can search the decision for a packet using the FDD.
Second, for the basic operation of testing mi ∈ si, MSU
builds d hash tables for the received packet, which is repre-
sented as d sequences of numbers.

7. DISCUSSION

7.1 Firewall Updates

When MSU updates its firewall policy, MSU and IBM
need to run the bootstrapping protocol again. To prevent

F

a

1

F2 F2

d da

h (0100010 K1 K2)

h (1000010 K1 K2)

h (0000010 K1 K2)

h (0100011 K1 K2)

h (0000011 K1 K2)

h (1000001 K1 K2)

h (0000010 K1 K2)

h (1100010 K1 K2)

h (0110011 K1 K2)

h (1000001 K1 K2)

h (0010011 K1 K2)

h (0100010 K1 K2)

F2

da

dummy6 dummy7

dummy5

Figure 6: The reconstructed FDD for packet pro-

cessing

IBM from identifying the unchanged rules, in each run of
the bootstrapping protocol, MSU and IBM should change
their secret keys K1 and K2. Thus, the rules that IBM
receives in each run of the bootstrapping protocol are totally
different. Note that MSU and IBM do not need to run the
bootstrapping protocol as long as MSU’s firewall remains
the same.

7.2 Decision Caching

A packet contains a header (with fields of source and des-
tination IP addresses, source and destination port numbers,
and protocol type) and a payload. For different packets
with the same header, IBM only needs to ask MSU once and
then cache the packet header along with its decision. When-
ever the IBM representative builds a connection through the
VPN tunnel, IBM first checks whether its cache has an entry
that corresponds to the connection. If yes, then IBM exe-
cutes that decision; if no, IBM asks MSU for the decision
using the filtering protocol and then adds an entry into its
cache. Because IBM may have multiple collaborators, IBM
should record the name of its collaborator (which is “MSU”
in this case) to every entry in the cache. Thus, IBM only
needs to maintain one cache. When MSU updates its firewall
policy and reruns the bootstrapping protocol, IBM needs to
delete all the entries that corresponds to MSU. IBM can im-
plement caches efficiently using hash tables or by counting
Bloom filters [5].

7.3 Special Treatment of IP Addresses

As we discussed previously, for every packet from (or to)
the IBM representative, IBM needs to translate the source
(or destination) IP from an address in IBM’s domain to the
address in MSU’s domain. Thus, for each packet that IBM
asks MSU for a decision, either the source or the destination
IP of the packet is the IP that MSU assigns to the IBM
representative. This IP address is known to MSU, MSU can
use it to compute the secret key K2 of IBM, which henceforth
violates the packet privacy. Note that x ⊕ K2 ⊕ x = K2.

To prevent this type of attacks, we modify our framework
as follows. First, MSU chooses five secret keys K1, K2, · · · , K5

that correspond to the five packet fields (source IP, destina-
tion IP, source port, destination port, and protocol type),
and similarly IBM chooses five secret keys K′

1, K
′

2, · · · , K′

5

as well. Second, in the bootstrapping protocol, for each non-
overlapping rule (m1, m2, · · · , m5) → 〈dec〉 (where each mi

is a number), MSU applies XOR to each mi using key Ki.
Thus, the rule becomes (m1⊕K1, m2⊕K2, · · · , m5⊕K5) →
〈dec〉. Then, MSU sends these rules to IBM. For each rule
(m1 ⊕ K1, m2 ⊕ K2, m3 ⊕ K3, m4 ⊕ K4, m5 ⊕ K5) → 〈dec〉
that IBM receives from MSU, assuming that m1 corresponds
to the field of source IP and m2 corresponds to the field of
destination IP, IBM creates the following two rules:

(m1 ⊕K1,HMACk(m2 ⊕K2⊕K
′

2),HMACk(m3 ⊕K3 ⊕K
′

3),

HMACk(m4⊕K4⊕K
′

4),HMACk (m5⊕K5⊕K
′

5)) → 〈dec〉

100

(HMACk (m1⊕K1 ⊕K
′

1), m2⊕K2,HMACk (m3⊕K3 ⊕K
′

3),

HMACk(m4⊕K4⊕K
′

4),HMACk (m5⊕K5⊕K
′

5)) → 〈dec〉

Basically, IBM keeps the source IP field unchanged in the
first rule and keeps the destination IP field unchanged in
the second rule. At last, IBM sends two sets of rules back
to MSU, where in one set the source IP is unchanged and in
the other set the destination IP is unchanged. Third, in the
filtering protocol, when IBM receives a packet, without loss
of generality assuming that the packet is originated from
its representative, IBM applies XOR to four fields of the
packet (destination IP, source port, destination port, and
protocol type) using its four corresponding keys K′

2, K
′

3, K
′

4,
and K′

5. In other words, when the source IP of the packet
is the MSU IP address, IBM does not apply XOR to that
field. When the resulting packet (s1, s2, s3, s4, s5) is sent to
MSU, MSU can easily detect that the source IP field s1 is
unprocessed because MSU knows the IP address of the IBM
representative. Then, MSU applies only XOR to s1 using
key K1, and process s2, s3, s4, and s5 as usual using keys
K2, K3, K4 and K5 respectively. Finally, MSU searches the
decision for the packet in the rule set where the source IP
field was not processed by IBM. Thus, leaving the source
(or destination) IP field unprocessed by IBM, MSU cannot
break any secret key of IBM.

7.4 Stateful Firewalls

So far we have assumed that firewalls are stateless. A
stateful firewall is a firewall that keeps track of the state
of network connections across the firewall. When a state-
ful firewall receives a packet, it first checks its connection
table to see whether the packet belongs to an ongoing con-
nection. If yes, the packet is permitted right away. If no,
the packet needs to be checked with its stateless rules to
determine whether the packet should be permitted; if the
stateless rules allows the packet to be permitted, then a
new connection is built and inserted into the connection ta-
ble of the firewall. Such stateful firewalls typically allow
inside non-server computers (i.e., the computers that are
not servers) to initiate connection with outside computers
but disallow outside computers to initiate connection with
non-server computers. When an inside non-server computer
sends a packet to an outside computer, the stateful firewall
uses its stateless rules to decide whether the packet should
be permitted; if yes, the firewall adds an entry in its connec-
tion table that will allow subsequent packets sent from that
outside computer to the inside computer. When an outside
computer sends a packet to an insider non-server computer,
if there is no corresponding entry in the connection table,
the firewall will use its stateless rules to make a decision,
which is typically deny.

Our framework can be extended to handle stateful fire-
walls. The basic idea is to let IBM maintain a connection
table for its representative. If MSU’s firewall is stateful, in
the extended framework, when IBM receives a packet from
or to its representative, IBM first consults its connection
table to see whether the packet belongs to an ongoing con-
nection. If yes, the packet is accepted right away. If no, IBM
asks MSU for the decision for this packet; if the packet is per-
mitted, IBM adds an entry into the connection table. Note
that the connection table is different from IBM’s decision
cache. If MSU’s firewall is stateless, for every connection,
with the help of cache, IBM needs to ask MSU the decision
for two packets that go in exactly the opposite direction. If

MSU’s firewall is stateful, with the help of the cache and the
connection table, IBM only needs to ask MSU the decision
for one packet, which is the one that initiates the connection.

7.5 Statistical Analysis Attack and Countermea-

sures

MSU could launch a statistical analysis attack to reduce
the number of possible rules that a packet matches. This
attack works as follows. After non-overlapping rule genera-
tion, MSU calculates the frequency for each number in the
rules. The frequency of each number is preserved in pro-
cessing the policy by MSU and IBM in the bootstrapping
protocol. MSU could exploit such frequency information to
reduce the number of possible rules that an IBM packet can
match. For example, considering the FDD in Figure 7(a),
the frequency of the number 0100010 in the generated non-
overlapping rules is 2, and none of the other numbers have
the same frequency. Thus, MSU can identify which rules re-
ceived from IBM correspond to the left branch of the FDD.
Interestingly, MSU cannot correlate any rule received from
IBM with the right most decision path of this FDD because
of the use of dummy rules.

F

a

1

F2 F2

d a

0100010 0000010

0000010 0110011 0010011

F

a

1

F2 F2

d a

0100010 0000010

0000010 0110011 0010011

d

dummy

(a) (b)

Figure 7: An example of statistical analysis attack

The statistical analysis attack is based on the assumption
that the frequency of each number remains the same before
and after IBM’s processing. Actually, to prevent statistical
analysis attacks, IBM can also make a statistical analysis
of the hashed rules and add some dummy rules to disturb
the statistical properties of the rules. Taking the example
FDD in Figure 7(a), IBM can easily destroy the frequency
information of the number in the FDD by adding a dummy
number to the right F2 node as shown in Figure 7(b). Basi-
cally, IBM generates dummy rules to make all the numbers
for each field have the same frequency. This will prevent
MSU from launching statistical analysis attacks. Recall that
dummy rules use out-of-range numbers and they cannot be
matched by any packet.

7.6 Hash Collision
The chance of having hash collisions for HMAC is ex-

tremely small. However, to be on the safe side, we pro-
pose the following solution to the problem. Our solution is
based on the observation that the bootstrapping protocol in
our framework can detect hash collisions easily. Recall that
the bootstrapping protocol converts firewall policies to non-
overlapping rules. If hash collision happens, then among
the rules that MSU receives from IBM, there exist at least
two rules that are exactly the same. This fact can be used
by MSU to easily detect whether hash collision happens. In
the case that hash collision does happen, MSU and IBM can
simply rerun the bootstrapping protocol, in which they will
choose different secret keys and henceforth the hash collision
is most likely removed.

101

8. RELATED WORK

8.1 Secure Function Evaluation

Secure Function Evaluation (SFE) was first introduced by
Yao with the famous “Two-Millionaire Problem” [14]. A se-
cure function evaluation protocol enables two parties, one
with input x and the other with y, to collaboratively com-
pute a function f(x, y) without disclosing one party’s in-
put to the other. The classical solutions for SFE are Yao’s
“garbled circuits”protocol [15] and Goldreich’s protocol [11].
The method provided by Yao has a computational cost of
O(2b), where b is the number of bits needed to encode x

and y. Later, the Secure Function Evaluation problem was
generalized to the Secure Multiparty Computation (SMC)
problem. Chaum et al. proved that any multiparty proto-
col problem can be solved if there is an authenticated se-
crecy channel between every pair of participants [2]. Zero-
knowledge protocols [1, 4, 10] also aims to provide the pri-
vacy between two parties. A zero knowledge protocol is an
interactive method for one party (suppose IBM) to prove
to another (suppose MSU) that a statement is true without
revealing anything other than the veracity of the statement.
Although we could use SFE or SMC solutions to solve this
problem as well as the problem of checking whether a value
is in a range, the O(2b) complexity makes such solutions
infeasible.

Li et al. proposed Oblivious Attribute Certificates (OAC-
erts) [8]. In OACerts, a credential holder uses his attributes
in an oblivious manner to access resources if and only if the
attributes in his credential satisfy the server’s policy, and
the server does not learn anything about the attribute values
of the credential holder, no matter whether the values sat-
isfy the policy or not. Our framework VGuard differs from
Li’s scheme in many ways. First, VGuard does not require
a trusted third party, while Li’s scheme requires a trusted
third party to compute and deliver the certificates for the
credential holder and the server. Second, the computational
cost of VGuard is much lower than that of Li’s scheme be-
cause VGuard is based on efficient XOR and HMAC func-
tions and Li’s scheme is based on expensive PKI operations.
Third, the communication cost of VGuard is much lower
than that of Li’s scheme because VGuard uses one round of
message exchange for processing one packet and Li’s scheme
only compares one bit in each round of communication for
evaluating greater or equal and less or equal functions.

8.2 CDCF Framework

Prior work that is closest to ours is the Cross-Domain Co-
operative Firewall (CDCF) framework [3]. There are five
major differences between VGuard framework and CDCF
framework. First, to achieve oblivious comparison, VGuard
uses the Xhash protocol and CDCF uses commutative en-
cryption functions (such as the Pohlig-Hellman Exponenti-
ation Cipher [12] and Secure RPC Authentication (SRA)
[13]), which are computationally expensive. A commuta-
tive encryption function satisfies the following four proper-
ties, where K1 and K2 are two secret keys: (1) For any x

and K, given x and (x)K , it is computationally infeasible to
compute the value of K. (2) For any x, K1, K2, we have
((x)K1)K2 = ((x)K2)K1 . (3) For any x, y, and K, if x 6= y,
then we have (x)K 6= (y)K . (4) For any x and K, given
K, (x)K can be decrypted in polynomial time. Although
commutative encryption functions can be used for oblivi-

ous comparison because of the commutative property, they
are computationally expensive. Second, CDCF allows MSU
to discover the original firewall rule that a packet matches,
which jeopardizes packet privacy. This is particularly dan-
gerous if the matching rule is a singleton rule, which will
allow MSU to immediately know the corresponding value in
the matching packet. In comparison, VGuard does not al-
low MSU to discover the original firewall rule that a packet
matches. The key operation in VGuard is that it converts
the original firewall rules to non-overlapping rules, which
enables IBM to shuffle the rules. Thus, MSU cannot fig-
ure out the correspondence between the original rules and
the received rules from IBM. Because a firewall policy fol-
lows first-match semantics, without such a conversion, MSU
and IBM can not disturb the order among rules in CDCF.
Third, CDCF allows MSU to know the decision for each
IBM’s packet, while VGuard does not. Knowing both the
original rules and the decision of a packet p, MSU could
guess what packets that p could be. Fourth, VGuard uses
firewall decision diagrams to speed up the processing of pack-
ets, while CDCF uses the straightforward sequential search.
Fifth, CDCF does not perform the address translation that
we discussed in Section 6.1, which could render MSU’s fire-
wall policy ineffective for IBM’s packets. However, the ad-
dress translation procedure could be easily added to CDCF.

In particular, CDCF is vulnerable to a type of attacks that
we call selective policy updating attacks. Such attacks allow
MSU to quickly discover the field values in a packet in the
following manner. When MSU receives a double encrypted
packet p, assuming p matches the prefix rule F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd → 〈decision〉, MSU splits each prefix Si into two
prefixes by instantiating the first ∗ by 0 and 1 respectively,
and therefore converts the rule to a maximum of 2d rules.
For example, suppose a packet p from IBM matches the
prefix rule F1 ∈ 10∗∗∧F2 ∈ 001∗ → a. Then, MSU splits the
rule into the following four rules: F1 ∈ 100∗∧F2 ∈ 0010 → a,
F1 ∈ 101 ∗ ∧F2 ∈ 0010 → a, F1 ∈ 100 ∗ ∧F2 ∈ 0011 → a,
F1 ∈ 101 ∗ ∧F2 ∈ 0011 → a. Then, MSU requests to rerun
the CDCF protocol due to firewall update. In the new run
of CDCF, MSU replaces the above rule by the rules after
splitting. (Note that d is typically 4 or 5.) After MSU
receives the double encrypted rules from IBM in the new
run, MSU compares p with the split rules again. One of the
split rules must match p. The above process repeats with a
maximum of 32 times before p matches a singleton rule at
the end. To counter the selective policy updating attacks,
CDCF can be fixed by updating the secret keys on both
MSU and IBM sides in each run of the CDCF protocol.

9. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of VGuard
on both real-life and synthetic firewall policies. In particu-
lar, we compare VGuard and CDCF side by side. We im-
plemented both VGuard and CDCF using Java 1.6.3. Our
experiments were carried out on a desktop PC running Win-
dows XP SP2 with 3G memory and dual 3.4 GHz Intel Pen-
tium processors. On real-life firewall policies, for processing
packets, our experimental results show that VGuard is 552
times faster than CDCF on MSU side and 5035 times faster
than CDCF on IBM side. On synthetic firewall policies,
for processing packets, our experimental results show that
VGuard is 252 times faster than CDCF on MSU side and
5529 times faster than CDCF on IBM side.

102

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

Real−life firewall

T
im

e
(s

)

VGuard

CDCF

Figure 8: The bootstrapping time

of MSU on real-life firewalls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

Real−life firewall

T
im

e
(s

)

VGuard

CDCF

Figure 9: The bootstrapping time

of IBM on real-life firewalls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

−1

10
0

10
1

10
2

10
3

Real−life firewall

T
im

e
(m

s
)

VGuard

CDCF

Figure 10: The filtering time of

MSU on real-life firewalls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

−2

10
−1

10
0

10
1

10
2

10
3

Real−life firewall

T
im

e
(m

s
)

VGuard

CDCF

Figure 11: The filtering time of

IBM on real-life firewalls

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

Number of rules

T
im

e
(s

)

VGuard

CDCF

Figure 12: The bootstrapping

time of MSU on synthetic firewalls

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

Number of rules

T
im

e
(s

)

VGuard

CDCF

Figure 13: The bootstrapping

time of IBM on synthetic firewalls

100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

Number of rules

T
im

e
(m

s
)

VGuard

CDCF

Figure 14: The filtering time of

MSU on synthetic firewalls

100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of rules

T
im

e
(m

s
)

VGuard

CDCF

Figure 15: The filtering time in

IBM

9.1 Efficiency on Real-life Firewall Policies

We conducted experiments on a set of 16 real-life firewall
policies that we collected from a variety of sources. Each
firewall examines five packet fields of source IP, destination
IP, source port, destination port, and protocol type. The
number of rules ranges from dozens to hundreds. We mea-
sured the computational cost of the two parties MSU and
IBM for both bootstrapping and filtering protocols. For
fair comparison, when we implemented CDCF, we used the
same parameters as in [3]; for example, we used the Pohlig-
Hellman algorithm [12] with a 1024-bit prime modulus and
160-bit encryption keys. In implementing VGuard, we chose
the HMAC-MD5 hash function with 128-bit keys.

Figures 8 and 9 show the computational cost of MSU and
IBM respectively in the bootstrapping protocol for both
VGuard and CDCF. From these two figures, we observe
that the bootstrapping cost of VGuard is lower than that
of CDCF for most firewalls. Although the Xhash scheme
is three orders of magnitude faster than the commutative

encryption scheme, the bootstrapping cost of VGuard is
not three orders of magnitude lower than CDCF because
VGuard converts the given firewall policy to non-overlapping
prefix rules, which results in a significant expansion. Note
that the bootstrapping protocol only needs to run once be-
tween MSU and IBM unless MSU updates its firewall policy.
The performance of the bootstrapping protocol is less criti-
cal than that of the filtering protocol.

Figures 10 and 11 show the computational cost of MSU
and IBM respectively in the filtering protocol for both VGuard
and CDCF. Note that the vertical axis of these two figures
are in a logarithmic scale. These two figures show that the
filtering cost of VGuard is significantly lower than that of
CDCF. On average, VGuard is 552 times faster than CDCF
on MSU side and 5035 times faster than CDCF on IBM
side. Note that the packet processing time for CDCF on
both MSU and IBM side in these two figures seems con-
stant, instead of increasing as the number of rules increases.
This is because in processing each packet on both MSU and

103

IBM side, for CDCF, the encryption time, which is roughly
constant for each packet, is about 20 times more than the
time for performing a linear search in the firewall.

9.2 Efficiency on Synthetic Firewall Policies

Firewall policies are considered confidential due to secu-
rity concerns. It is difficult to get a large number of real-life
firewall policies to experiment with. To further evaluate
the performance of VGuard in comparison with CDCF, we
generated a large number of synthetic firewall policies and
conducted experiments on them. Every predicate of a rule in
our synthetic firewall has five fields: source IP address, des-
tination IP address, source port number, destination port
number, and protocol type. We first randomly generated
a list of values for each field. For IP addresses, we gen-
erated a random class C address then generated single IP
addresses within the class C addresses; for ports we gener-
ated a random range; for protocols, we choose either TCP,
UDP, or ICMP. Every field also has the “*” value included
in the list. We then generated a list of predicates by taking
the cross product of these five lists and randomly selected
from the cross product until we reached our desired classi-
fier size by including a final default predicate. Finally, we
randomly assigned one of two decisions, accept or discard,
to each predicate to make a complete rule. We generated
firewall policies with the number of rules ranging from 100
to 1000, where for each number we generated ten synthetic
firewall policies.

Figures 12 and 13 show the computational cost of MSU
and IBM respectively in the bootstrapping protocol for both
VGuard and CDCF. Figures 14 and 15 show the computa-
tional cost of MSU and IBM respectively in the filtering
protocol for both VGuard and CDCF. On average, for these
synthetic firewall policies, VGuard is 252 times faster than
CDCF on the MSU side and 5529 times faster than CDCF
on the IBM side.

10. CONCLUDING REMARKS

In this paper, we propose VGuard, a privacy preserving
framework for collaborative enforcement of firewall policies.
In terms of security, comparing with the state-of-the-art
CDCF scheme, VGuard is more secure because of two major
reasons. First, VGuard converts a firewall policy of an or-
dered list of overlapping rules to an equivalent non-ordered
set of non-overlapping rules, which enables rule shuffling
and consequently MSU cannot identify which original rule
matches the given packet. Second, VGuard obfuscates rule
decisions, which prevents MSU from knowing the decision
for the given packet. In terms of efficiency, comparing with
the state-of-the-art CDCF scheme, VGuard is hundreds of
times faster than CDCF in processing packets because of
two reasons. First, VGuard uses a new oblivious compari-
son scheme proposed in this paper, which is three orders of
magnitude faster than the commutative encryption scheme
used in CDCF. Second, VGuard uses firewall decision dia-
grams for processing packets, which is much faster than the
linear search used in CDCF. We want to emphasize that the
VGuard framework can be applied to other types of secu-
rity policies as well. It is also worth noting that the Xhash
scheme can be used for other applications that require obliv-
ious comparison.

Acknowledgement

The authors would like to thank Jerry Cheng, Hao Yang,
and anonymous referees for their valuable comments. The

work is supported by MSU IRGP Grant and the National
Science Foundation under Grant No. CNS-0716407.

11. REFERENCES
[1] Fabrice Boudot. Efficient proofs that a commited

number lies in an interval. In Proceedings of the
Advances in Cryptology (EUROCRYPT), volume 1807
of Lecture Notes in Computer Science, May 2000.

[2] David Chaum, Claude Crepeau, and Ivan Damgard.
Multiparty unconditionally secure protocols. In
Proceedings of the ACM Symposium on Theory of
Computing, pages 11–19, 1988.

[3] Jerry Cheng, Hao Yang, Starsky H.Y. Wong, and
Songwu Lu. Design and implementation of
cross-domain cooperative firewall. In Proceedings of
the IEEE International Conference on Network
Protocols (ICNP) ’2007, 2007.

[4] Ronald Cramer, Matthew K. Franklin, Berry
Schoenmarks, and Moti Yung. Multi-authority
secret-ballot elections with linear work. In Proceedings
of the Advances in Cryptology (EUROCRYPT), 1996.

[5] Li Fan, Pei Cao, Jussara Almeida, and Andrei Broder.
Summary cache: A scalable wide-area web cache
sharing protocol. In Proceedings of the ACM
SIGCOMM, September 1998.

[6] Mohamed G. Gouda and Alex X. Liu. Structured
firewall design. Computer Networks Journal
(Elsevier), 51(4):1106–1120, March 2007.

[7] Pankaj Gupta and Nick McKeown. Algorithms for
packet classification. IEEE Network, 15(2):24–32,
2001.

[8] Jiangtao Li and Ninghui Li. Oacerts: Oblivious
attribute certificates. In Proceedings of the 3rd
Conference on Applied Cryptography and Network
Security (ACNS), pages 301–317, June 2005.

[9] Alex X. Liu and Mohamed G. Gouda. Diverse firewall
design. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN-04),
pages 595–604, June 2004.

[10] Wenbo Mao. Guaranteed correct sharing of integer
factorization with off-line shareholders. In Proceedings
of the Public Key Cryptography (PKC), volume 1431
of Lecture Notes in Computer Science, February 1998.

[11] Silvio Micali Oded Goldreich and Avi Wigderson. How
to play any mental game. In Proceedings of the
nineteenth anual ACM Conference on Theory of
computing, May 1987.

[12] Stephen C. Pohlig and Martin E. Hellman. An
improved algorithm for computing logarithms over
gf(p) and its cryptographic significance. IEEE
Transactions Information and System Security,
IT-24:106–110, 1978.

[13] David K. Hess David R. Safford and Douglas Lee
Schales. Secure RPC authentication (SRA) for
TELNET and FTP. Technical report, 1993.

[14] Andrew C. Yao. Protocols for secure computations. In
Proceedings of the 23rd IEEE Symposium on the
Foundations of Computer Science (FOCS), pages
160–164, 1982.

[15] Andrew C. Yao. How to generate and exchange
secrets. In Proceedings of the 27th IEEE Symposium
on Fundations of Computer Science, 1986.

104

