
Bit Weaving: A Non-prefix Approach to
Compressing Packet Classifiers in TCAMs

Chad R. Meiners Alex X. Liu Eric Torng
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48823, U.S.A.

{meinersc, alexliu, torng}@cse.msu.edu

Abstract—Ternary Content Addressable Memories (TCAMs)
have become the de facto standard in industry for fast packet
classification. Unfortunately, TCAMs have limitations of small
capacity, high power consumption, high heat generation, and high
cost. The well-known range expansion problem exacerbates these
limitations as each classifier rule typically has to be converted
to multiple TCAM rules. One method for coping with these
limitations is to use compression schemes to reduce the number
of TCAM rules required to represent a classifier. Unfortunately,
all existing compression schemes only produce prefix classifiers.
Thus, they all miss the compression opportunities created by
non-prefix ternary classifiers.

In this paper, we propose bit weaving, the first non-prefix
compression scheme. Bit weaving is based on the observation that
TCAM entries that have the same decision and whose predicates
differ by only one bit can be merged into one entry by replacing
the bit in question with *. Bit weaving consists of two new
techniques, bit swapping and bit merging, to first identify and then
merge such rules together. The key advantages of bit weaving are
that it runs fast, it is effective, and it is composable with other
TCAM optimization methods as a pre/post-processing routine.

We implemented bit weaving and conducted experiments on
both real-world and synthetic packet classifiers. Our experimen-
tal results show the following: (i) bit weaving is an effective
stand-alone compression technique (it achieves an average com-
pression ratio of 23.6%) and (ii) bit weaving finds compression
opportunities that other methods miss. Specifically, bit weaving
improves the prior TCAM optimization techniques of TCAM
Razor and Topological Transformation by an average of 12.8%
and 36.5%, respectively.

I. INTRODUCTION

A. Background on TCAM-Based Packet Classification

Packet classification is the core mechanism that enables
many networking devices, such as routers and firewalls, to per-
form services such as packet filtering, virtual private networks
(VPNs), network address translation (NAT), quality of service
(QoS), load balancing, traffic accounting and monitoring,
differentiated services (Diffserv), etc. The essential problem
is to compare each packet with a list of predefined rules,
which we call a packet classifier, and find the first (i.e.,
highest priority) rule that the packet matches. Table I shows an
example packet classifier of three rules. The format of these
rules is based upon the format used in Access Control Lists
(ACLs) on Cisco routers. In this paper we use the terms packet
classifiers, ACLs, rule lists, and lookup tables interchangeably.

Hardware-based packet classification using Ternary Content
Addressable Memories (TCAMs) is now the de facto industry

Rule Source IP Dest. IP Source Port Dest. Port Protocol Action
𝑟1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
𝑟2 1.2.11.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
𝑟3 * * * * * discard

TABLE I
AN EXAMPLE PACKET CLASSIFIER

standard [1], [9]. TCAM-based packet classification is widely
used because Internet routers need to classify every packet on
the wire. Although software based packet classification has
been extensively studied (see survey paper [24]), these tech-
niques cannot match the wire speed performance of TCAM-
based packet classification systems.

As a traditional random access memory chip receives an
address and returns the content of the memory at that address,
a TCAM chip works in a reverse manner: it receives content
and returns the address of the first entry where the content lies
in the TCAM in constant time (i.e., a few clock cycles). Ex-
ploiting this hardware feature, TCAM-based packet classifiers
store a rule in each entry as an array of 0’s, 1’s, or *’s (don’t-
care values). A packet header (i.e., a search key) matches an
entry if and only if their corresponding 0’s and 1’s match.
Given a search key to a TCAM, the hardware circuits compare
the key with all its occupied entries in parallel and return the
index (or the content, depending on the chip architecture and
configuration,) of the first matching entry.

B. Motivation for TCAM-based Classifier Compression
Although TCAM-based packet classification is currently

the de facto standard in industry, TCAMs do have several
limitations. First, TCAM chips have limited capacity. The
largest available TCAM chip has a capacity of 36 megabits
(Mb). Smaller TCAM chips are the most popular due to
the other limitations of TCAM chips stated below. Second,
TCAMs require packet classification rules to be in ternary
format. This leads to the well-known range expansion problem,
i.e., converting packet classification rules to ternary format
results in a much larger number of TCAM rules, which
exacerbates the problem of limited capacity TCAMs. In a
typical packet classification rule, the three fields of source
and destination IP addresses and protocol type are specified as
prefixes (e.g., 1011****) where all the *s are at the end of the
ternary string, so the fields can be directly stored in a TCAM.
However, the remaining two fields of source and destination
port numbers are specified in ranges (i.e., integer intervals such
as [1, 65534]), which need to be converted to one or more
prefixes before being stored in a TCAM. This can lead to a

978-1-4244-4634-6/09/$25.00 ©2009 IEEE 93

significant increase in the number of TCAM entries needed to
encode a rule. For example, 30 prefixes are needed to represent
the single range [1, 65534], so 30× 30 = 900 TCAM entries
are required to represent the single rule 𝑟1 in Table I. Third,
TCAM chips consume lots of power. The power consumption
of a TCAM chip is about 1.85 Watts per Mb [2]. This is
roughly 30 times larger than a comparably sized SRAM chip
[10]. TCAMs consume lots of power because every memory
access searches the entire active memory in parallel. That is,
a TCAM is not just memory, but memory and a (very fast)
parallel search system. Fourth, TCAMs generate lots of heat
due to their high power consumption. Fifth, a TCAM chip
occupies a large footprint on a line card. A TCAM chip
occupies 6 times (or more) board space than an equivalent
capacity SRAM chip [10]. For networking devices such as
routers, area efficiency of the circuit board is a critical issue.
Finally, TCAMs are expensive, costing hundreds of dollars
even in large quantities. TCAM chips often cost more than
network processors [11]. The high price of TCAMs is mainly
due to their large die area, not their market size [10]. Power
consumption, heat generation, board space, and cost lead to
system designers using smaller TCAM chips than the largest
available. For example, TCAM components are often restricted
to at most 10% of an entire board’s power budget, so a 36 Mb
TCAM may not be deployable on many routers due to power
consumption reasons.

While TCAM-based packet classification is the current
industry standard, the above limitations imply that existing
TCAM-based solutions may not be able to scale up to meet
the future packet classification needs of the rapidly growing
Internet. Specifically, packet classifiers are growing rapidly in
size and width due to several causes. First, the deployment
of new Internet services and the rise of new security threats
lead to larger and more complex packet classification rule sets.
While traditional packet classification rules mostly examine
the five standard header fields, new classification applications
begin to examine addition fields such as classifier-id, protocol
flags, ToS (type of service), switch-port numbers, security
tags, etc. Second, with the increasing adoption of IPv6, the
number of bits required to represent source and destination IP
address will grow from 64 to 256. The size and width growth
of packet classifiers puts more demand on TCAM capacity,
power consumption, and heat dissipation.

To address the above TCAM limitations and ensure the
scalability of TCAM-based packet classification, we study the
following TCAM-based classifier compression problem: given
a packet classifier, we want to efficiently generate a semanti-
cally equivalent packet classifier that requires fewer TCAM
entries. Note that two packet classifiers are (semantically)
equivalent if and only if they have the same decision for every
packet. TCAM-based classifier compression helps to address
the limited capacity of deployed TCAMs because reducing the
number of TCAM entries effectively increases the fixed capac-
ity of a chip. Reducing the number of rules in a TCAM directly
reduces power consumption and heat generation because the
energy consumed by a TCAM grows linearly with the number
of ternary rules it stores [27]. Finally, TCAM-based classifier
compression lets us use smaller TCAMs, which results in less

power consumption, less heat generation, less board space, and
lower hardware cost.

C. Limitations of Prior Art

All prior TCAM-based classifier compression schemes (i.e.,
[3], [6], [7], [13], [16], [23]) suffer from one fundamental
limitation: they only produce prefix classifiers, which means
they all miss some opportunities for compression. A prefix
classifier is a classifier in which every rule is a prefix rule. In
a prefix rule, each field is specified as a prefix bit string (e.g.,
01**) where *s all appear at the end. In a ternary rule, each
field is a ternary bit string (e.g., 0**1) where * can appear at
any position. Every prefix rule is a ternary rule, but not vice
versa. Because all previous compression schemes can only
produce prefix rules, they miss the compression opportunities
created by non-prefix ternary rules.

D. Our Bit Weaving Approach

In this paper, we propose bit weaving, a new TCAM-based
classifier compression scheme that is not limited to producing
prefix classifiers. The basic idea of bit weaving is simple:
adjacent TCAM entries that have the same decision and have
a hamming distance of one (i.e., differ by only one bit) can be
merged into one entry by replacing the bit in question with *.
Bit weaving applies two new techniques, bit swapping and bit
merging, to first identify and then merge such rules together.
Bit swapping first cuts a rule list into a series of partitions.
Within each partition, a single permutation is applied to each
rule’s predicate to produce a reordered rule predicate, which
forms a single prefix where all *’s are at the end of the rule
predicate. This single prefix format allows us to use existing
dynamic programming techniques [16], [23] to find a minimal
TCAM table for each partition in polynomial time. Bit merging
then finds and merges mergeable rules from each partition.
After bit merging, we revert all ternary strings back to their
original bit permutation to produce the final TCAM table.
We name our solution bit weaving because it manipulates bit
ordering in a ternary string much like a weaver manipulates
the position of threads.

The example in Figure 1 shows that bit weaving can further
compress a minimal prefix classifier. The input classifier has
5 prefix rules with three decisions (0, 1, and 2) over two
fields 𝐹1 and 𝐹2, where each field has two bits. Bit weaving
compresses this minimal prefix classifier with 5 rules down
to 3 ternary rules as follows. First, it cuts the input prefix
classifier into two partitions which are the first two rules and
the last three rules, respectively. Second, it swaps bit columns
in each partition to make the two-dimensional rules into one-
dimension prefix rules. In this example, in the second partition,
the second and the fourth columns are swapped. We call the
above two steps bit swapping. Third, we treat each partition
as a one-dimensional prefix rule list and generate a minimal
prefix representation. In this example, the second partition is
minimized to 2 prefix rules. Fourth, in each partition, we detect
and merge rules that differ by a single bit. In the first partition,
the two rules are merged. We call this step bit merging. Finally,
we revert each partition back to its original bit order. In this
example, for the second partition after minimization, we swap

94

the second and the fourth columns again to recover the original
bit order. The final output is a ternary packet classifier with
only 3 rules.

Fig. 1. Example of the bit weaving approach

E. Technical Challenges

To implement bit weaving, we must solve several challeng-
ing technical problems. First, we need to develop an algorithm
that partitions a rule list into the least number of partitions.
Second, we must develop an algorithm that permutes the bit
columns within each partition to produce one-dimensional
prefix rule lists. Third, we must adapt existing one-dimensional
prefix rule list minimization algorithms (i.e., [16], [23]) to
minimize incomplete one-dimensional rule lists. A rule list is
complete if and only if for any packet, the list has a rule that
the packet matches. Finally, we must develop algorithms to
detect and then merge mergeable rules within each partition.

F. Our Contributions

Our bit weaving approach has many significant benefits.
First, it is the first TCAM compression method that can create
non-prefix classifiers. All previous compression methods [6],
[12], [14], [16] generate only prefix classifiers. This restriction
to prefix format may miss important compression opportu-
nities. Second, it is the first efficient compression method
with a polynomial worst-case running time with respect to
the number of fields in each rule. Third, it is orthogonal to
other techniques, which means that it can be run as a pre/post-
processing routine in combination with other compression
techniques. In particular, bit weaving complements TCAM
Razor [16] nicely. In our experiments on real-world classifiers,
bit weaving outperforms TCAM Razor on classifiers that do
not have significant range expansion. Fourth, it supports fast
incremental updates to classifiers.

G. Summary of Experimental Results

We implemented bit weaving and conducted experiments
on both real-world and synthetic packet classifiers. Our experi-
mental results show that bit weaving is an effective stand-alone
compression technique as it achieves an average compression
ratio of 23.6% and that bit weaving finds compression op-
portunities that other methods miss. Specifically, bit weaving
improves the prior TCAM optimization techniques of TCAM
Razor [16], and Topological Transformation [18] by an aver-
age of 12.8% and 36.5%, respectively.

The rest of this paper proceeds as follows. We start by
reviewing related work in Section II. We define bit swapping
in Section III and bit merging in Section IV. In Section V,
we discuss how bit weaving supports incremental updates,
how bit weaving can be composed with other compression
methods, and the complexity bounds of bit weaving. We show
our experimental results on both real-life and synthetic packet
classifiers in Section VI, and we give concluding remarks in
Section VII.

II. RELATED WORK

TCAM-based packet classification systems have been
widely deployed due to their 𝑂(1) classification time. This
has led to a significant amount of work that explores ways to
efficiently store packet classifiers within TCAMs. Prior work
falls into three broad categories: classifier compression, range
encoding, and circuit and hardware modification.

A. Classifier Compression

Classifier compression converts a given packet classifier to
another semantically equivalent packet classifier that requires
fewer TCAM entries. Several classifier compression schemes
have been proposed [3], [6], [7], [12], [16], [23]. The work is
either focused on one-dimensional and two dimensional packet
classifiers [3], [7], [23], or it is focused on compressing packet
classifiers with more than 2 dimensions [6], [12], [14], [16].
Liu and Gouda proposed the first algorithm for eliminating
all the redundant rules in a packet classifier [12], and we
presented a more efficient redundancy removal algorithm [14].
Dong et al. proposed schemes to reduce range expansion by
repeatedly expanding or trimming ranges to prefix boundaries
[6]. Their schemes use redundancy removal algorithms [12] to
test whether each modification changes the semantics of the
classifier. We proposed a greedy algorithm that finds locally
minimal prefix solutions along each field and combines these
solutions into a smaller equivalent prefix packet classifier [16].

Bit weaving differs from these previous efforts in that it
is the first classifier minimization algorithm that produces
equivalent non-prefix packet classifiers given an arbitrary
number of fields and decisions. Furthermore, bit weaving is the
first algorithm whose worst-case running time is polynomial
with respect to the number of fields within a classifier.

B. Range Encoding

Range encoding schemes cope with range expansion by
developing a new representation for important packets and
intervals. For example, a new representation for interval
[1, 65534] may be developed so that this interval can be rep-
resented with one TCAM entry rather than 900 prefix entries.
Previous range encoding schemes fall into two categories:
database independent encoding schemes [4], [9], where each
rule is encoded according to standard encoding scheme, and
database dependent encoding schemes [5], [15], [18], [20],
[26], where the encoding of each rule depends on the intervals
present within the classifier. While range encoding methods
do mitigate the effects of prefix expansion, they require either
extra hardware or more per packet processing time.

C. Circuit and Hardware Modification

Spitznagel et al. proposed adding comparators at each
entry level to better accommodate range matching [22]. While
this research direction is important, our contribution does
not require circuit-level modifications to hardware. Zheng et
al. developed load balancing algorithms for TCAM based
systems to exploit chip level parallelism to increase classifier
throughput with multiple TCAM chips without having to copy
the complete classifier to every TCAM chip [28], [29]. This
work may benefit from bit weaving since fewer rules would
need to be distributed among the TCAM chips.

95

III. BIT SWAPPING

In this section, we present a new technique called bit
swapping. It is the first part of our bit weaving approach.

A. Prefix Bit Swapping Algorithm
Definition III.1 (Bit-swap). A bit-swap 𝛽 of a length 𝑚
ternary string 𝑡 is a permutation of the 𝑚 ternary bits; that is,
𝛽 rearranges the order of the ternary bits of 𝑡. The resulting
permuted ternary string is denoted 𝛽(𝑡). □

For example, if 𝛽 is permutation 312 and string 𝑡 is 0∗1,
then 𝛽(𝑡) = 10∗. For any length 𝑚 string, there are 𝑚!
different bit-swaps. Bit-swap 𝛽 is a prefix bit-swap of 𝑡 if
the permuted string 𝛽(𝑡) is in prefix format. Let 𝑃 (𝑡) denote
the set of prefix bit-swaps for 𝑡: specifically, the bit-swaps that
move the ∗ bits of 𝑡 to the end of the string.

A bit-swap 𝛽 can be applied to a list ℓ of ternary strings
⟨𝑡1, . . . , 𝑡𝑛⟩ where ℓ is typically a list of consecutive rules in
a packet classifier. The resulting list of permuted strings is
denoted as 𝛽(ℓ). Bit-swap 𝛽 is a prefix bit-swap for ℓ if 𝛽 is a
prefix bit-swap for every string 𝑡𝑖 in list ℓ for 1 ≤ 𝑖 ≤ 𝑛. Let
𝑃 (ℓ) denote the set of prefix bit-swaps for list ℓ. It follows
that 𝑃 (ℓ) = ∩𝑛

𝑖=1𝑃 (𝑡𝑖).
Prefix bit-swaps are useful for two main reasons. First, we

can minimize prefix rule lists using algorithms in [7], [16],
[23]. Second, prefix format facilitates the second key idea of
bit weaving, bit merging (Section IV). After bit merging, the
classifier is reverted to its original bit order, which typically
results in a non-prefix format classifier.

Unfortunately, many lists of string ℓ have no prefix bit-
swaps which means that 𝑃 (ℓ) = ∅. For example, the list
⟨0∗, ∗0⟩ does not have a prefix bit-swap. We now give the
necessary and sufficient conditions for 𝑃 (ℓ) ∕= ∅ after defining
the following notation.

Given that each ternary string denotes a set of binary strings,
we define two new operators for ternary strings: 0̂(𝑥) and ⊑.
For any ternary string 𝑥, 0̂(𝑥) denotes the resulting ternary
string where every 1 in 𝑥 is replaced by 0. For example,
0̂(1*)=0*. For any two ternary strings 𝑥 and 𝑦, 𝑥 ⊑ 𝑦

if and only if 0̂(𝑥) ⊆ 0̂(𝑦). For example, 1*⊑0* because
0̂(1*)=0*={00, 01} ⊆ {00, 01}=0̂(0*).

Definition III.2 (Cross Pattern). Given two ternary strings
𝑡1 and 𝑡2, a cross pattern on 𝑡1 and 𝑡2 exists if and only if
(𝑡1 ∕⊑ 𝑡2) ∧ (𝑡2 ∕⊑ 𝑡1). In such cases, we say that 𝑡1 crosses
𝑡2. □

We first observe that bit swaps have no effect on whether
or not two strings cross each other.

Observation III.1. Given two ternary strings, 𝑡1 and 𝑡2, and
a bit-swap 𝛽, 𝑡1 ⊆ 𝑡2 if and only if 𝛽(𝑡1) ⊆ 𝛽(𝑡2), and 𝑡1 ⊑ 𝑡2
if and only if 𝛽(𝑡1) ⊑ 𝛽(𝑡2). □

Theorem III.1. Given a list ℓ = ⟨𝑡1, . . . , 𝑡𝑛⟩ of 𝑛 ternary
strings, 𝑃 (ℓ) ∕= ∅ if and only if no two ternary strings 𝑡𝑖 and
𝑡𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛) cross each other. □

Proof: (implication) It is given that there exists a prefix
bit-swap 𝛽 ∈ 𝑃 (ℓ). Suppose that string 𝑡𝑖 crosses string
𝑡𝑗 . According to Observation III.1, 𝛽(𝑡𝑖) crosses 𝛽(𝑡𝑗). This

implies that one of the two ternary strings 𝛽(𝑡𝑖) and 𝛽(𝑡𝑗) has
a ∗ before a 0 or 1 and is not in prefix format. Thus, 𝛽 is not
in 𝑃 (ℓ), which is a contradiction.

(converse) It is given that no two ternary strings cross each
other. It follows that we can impose a total order on the ternary
strings in ℓ using the relation ⊑. Note, there may be more than
one total order if 𝑡𝑖 ⊑ 𝑡𝑗 and 𝑡𝑗 ⊑ 𝑡𝑖 for some values of 𝑖
and 𝑗. Let us reorder the ternary strings in ℓ according to this
total order; that is, 𝑡′1 ⊑ 𝑡′2 ⊑ ⋅ ⋅ ⋅ ⊑ 𝑡′𝑛−1 ⊑ 𝑡′𝑛. Any bit
swap that puts the ∗ bit positions of 𝑡′1 last, preceded by the
∗ bit positions of 𝑡′2, . . . , preceded by the ∗ bit positions of
𝑡′𝑛, finally preceded by all the remaining bit positions will be
a prefix bit-swap for ℓ. Thus, the result follows.

Theorem III.1 gives us a simple algorithm for detecting
whether a prefix bit-swap exists for a list of ternary strings. If
a prefix bit-swap exists, the proof of Theorem III.1 gives us
an algorithm for constructing a prefix bit-swap as shown in
Algorithm 1. The algorithm sorts bit columns in an increasing
order by the number of strings that have a ∗ in that column.

Before we formally present our bit swapping algorithm, we
define the concepts of bit matrix and decision array for a
possibly incomplete rule list (i.e., there may exist a packet
that none of the 𝑛 rules matches). Any list of 𝑛 rules defines
a bit matrix 𝑀 [1..𝑛, 1..𝑏] and a decision array 𝐷[1..𝑛], where
for any 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑏, 𝑀 [𝑖, 𝑗] is the 𝑗-th bit in the
predicate of the 𝑖-th rule and 𝐷[𝑖] is the decision of the 𝑖-th
rule. Conversely, a bit matrix𝑀 [1..𝑛, 1..𝑏] and a decision array
𝐷[1..𝑛] also uniquely defines a rule list. Given a bit matrix
𝑀 [1..𝑛, 1..𝑏] and a decision array 𝐷[1..𝑛] defined by a rule
list, our bit swapping algorithm swaps the columns in 𝑀 such
that for any two columns 𝑖 and 𝑗 in the resulting bit matrix
𝑀 ′ where 𝑖 < 𝑗, the number of *s in the 𝑖-th column is less
than or equal to the number of *s in the 𝑗-th column. Figure
2(a) shows a bit matrix and Figure 2(b) shows the resulting bit
matrix after bit swapping. Let 𝐿1 denote the rule list defined
by 𝑀 and 𝐷, and let 𝐿2 denote the rule list defined by 𝑀 ′

and 𝐷. Usually, 𝐿1 will not be equivalent to 𝐿2. This is not
an issue. The key is that if we revert the bit-swap on any rule
list 𝐿3 that is equivalent to 𝐿2, the resulting rule list 𝐿4 will
be equivalent to 𝐿1.

Fig. 2. Example of bit-swapping

B. Minimal Cross-Free Classifier Partitioning Algorithm

Given a classifier ℂ, if 𝑃 (ℂ) = ∅, we cut ℂ into partitions
where each partition has no cross patterns and thus has a prefix
bit-swap. We treat classifier ℂ as a list of ternary strings by
ignoring the decision of each rule.

Given an 𝑛-rule classifier ℂ = ⟨𝑟1, . . . , 𝑟𝑛⟩, a partition ℙ
on ℂ is a list of consecutive rules ⟨𝑟𝑖, . . . , 𝑟𝑗⟩ in ℂ for some 𝑖
and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. A partitioning, ℙ1, . . . ,ℙ𝑘, of
ℂ is a series of 𝑘 partitions on ℂ such that the concatenation of
ℙ1, . . . ,ℙ𝑘 is ℂ. A partitioning is cross-free if and only if each

96

Fig. 3. Applying bit weaving algorithm to an example classifier

Algorithm 1: Finds a prefix bit-swap
Input: A classifier 𝐶 of 𝑛 rules ⟨𝑟1, . . . , 𝑟𝑛⟩ where each rule

has 𝑏 bits.
Output: A classifier 𝐶′ that is 𝐶 after a valid prefix bit-swap.

Let 𝑀 [1 . . . 𝑛, 1 . . . 𝑏] and 𝐷[1 . . . 𝑛] be the bit matrix and1
decision array of 𝐶;
Let 𝐵 = ⟨(𝑖, 𝑗)∣1 ≤ 𝑖 ≤ 𝑏 where 𝑗 is the number of *’s in2
𝑀 [1 . . . 𝑛, 𝑖]⟩;
Sort 𝐵 in ascending order of each pair’s second value;3

Let 𝑀 ′ be a copy of 𝑀 ;4
for k := 1 to b do5

Let (𝑖, 𝑗) = 𝐵[𝑘];6

𝑀 ′[1 . . . 𝑛, 𝑘] := 𝑀 [1 . . . 𝑛, 𝑖];7

Output 𝐶′ defined by 𝑀 ′ and 𝐷;8

partition has no cross patterns. Given a classifier ℂ, a cross-
free partitioning with 𝑘 partitions is minimal if and only if any
partitioning of ℂ with 𝑘 − 1 partitions is not cross-free. The
goal of classifier partitioning is to find a minimal cross-free
partitioning for a given classifier. We then apply independent
prefix bit-swaps to each partition.

We give an algorithm, depicted in Algorithm 2, that finds
a minimal cross-free partitioning for a given classifier. At any
time, we have one active partition. The initial active partition
is the last rule of the classifier. We consider each rule in the
classifier in reverse order and attempt to add it to the active
partition. If the current rule crosses any rule in the active
partition, that partition is completed, and the active partition
is reset to contain only the new rule. We process rules in
reverse order to facilitate efficient incremental update (Section
V-B). New rules are more likely to be added to the front of
a classifier than at the end. It is not hard to prove that this
algorithm produces a minimal cross-free partitioning for any
given classifier.

The core operation in our cross-free partitioning algorithm
is to check whether two ternary strings cross each other. We
can efficiently perform this check based on Theorem III.2. For
any ternary string 𝑡 of length 𝑚, we define the bit mask of
𝑡, denoted 𝑀(𝑡), to be a binary string of length 𝑚 where the
𝑖-th bit (0 ≤ 𝑖 < 𝑚) 𝑀(𝑡)[𝑖] = 0 if 𝑡[𝑖] = ∗ and 𝑀(𝑡)[𝑖] = 1
otherwise. For any two binary strings 𝑎 and 𝑏, we use 𝑎&& 𝑏
to denote the resulting binary string of the bitwise logical AND
of 𝑎 and 𝑏.

Theorem III.2. For any two ternary string 𝑡1 and 𝑡2, 𝑡1 does
crosses 𝑡2 if and only if 𝑀(𝑡1)&&𝑀(𝑡2) is different from
both 𝑀(𝑡1) and 𝑀(𝑡2). □

Algorithm 2: Find a minimal partition
Input: A list of 𝑛 rules ⟨𝑟1, . . . , 𝑟𝑛⟩ where each rule has 𝑏 bits.
Output: A list of partitions.

Let 𝑃 be the current partition (empty list), and 𝐿 be a list of1
partitions (empty);
for 𝑖 := 𝑛 to 1 do2

if 𝑟𝑖 introduces a cross pattern in 𝑃 then3
Append 𝑃 to the head of 𝐿;4
𝑃 := ⟨𝑟𝑖⟩;5

else6
Append 𝑟𝑖 to the head of 𝑃 ;7

return 𝐿;8

For example, given two ternary strings 𝑡1 = 01∗0 and 𝑡2 =
101∗, whose bit masks are 𝑀(𝑡1) = 1101 𝑀(𝑡1) = 1110,
we have 𝑀(𝑡1)&&𝑀(𝑡2) = 1100. Therefore, 𝑡1 = 01∗0
crosses 𝑡2 = 101∗ because 𝑀(𝑡1)&&𝑀(𝑡2) ∕= 𝑀(𝑡1) and
𝑀(𝑡1)&&𝑀(𝑡2) ∕=𝑀(𝑡2).

Figure 3 shows the execution of our bit weaving algorithm
on an example classifier. Here we describe the bit swapping
portion of that execution. The input classifier has 10 prefix
rules with three decisions (0, 1, and 2) over two fields 𝐹1 and
𝐹2, where 𝐹1 has two bits, and 𝐹2 has six bits. We begin by
constructing a maximal cross-free partitioning of the classifier
by starting at the last rule and working upward. We find that
the seventh rule introduces a cross pattern with the eighth
rule according to Theorem III.2. This results in splitting the
classifier into two partitions. Second, we perform bit swapping
on each partition, which converts each partition into a list of
one-dimensional prefix rules.

C. Partial List Minimization Algorithm
We now describe how to minimize each bit-swapped parti-

tion where we view each partition as a list of 1-dimensional
prefix rules. If a list of 1-dimensional prefix rules is complete
(i.e., any packet has a matching rule in the list), we can use
the algorithms in [7], [23] to produce an equivalent minimal
prefix rule list. However, the rule list in a partition is often
incomplete; that is, there exist packets that do not match any
rule in the partition.

Instead, we adapt the Weighted 1-Dimensional Prefix List
Minimization Algorithm in [16]. Given a 1-dimensional
packet classifier ℂ of 𝑛 prefix rules ⟨𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛⟩,
where {Decision(𝑟1),Decision(𝑟2), ⋅ ⋅ ⋅ ,Decision(𝑟𝑛)} =
{𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑧} and each decision 𝑑𝑖 is associated with a
cost (i.e. weight) Cost(di) (for 1 ≤ 𝑖 ≤ 𝑧), the cost
of packet classifier ℂ is defined as follows: Cost(ℂ) =

97

∑𝑛

𝑖=1
Cost(Decision(𝑟𝑖)). For any packet classifier ℂ, we use

{ℂ} to denote the set of all classifiers that are equivalent to
ℂ. The problem of weighted one-dimensional TCAM mini-
mization is defined as follows: given a one-dimensional packet
classifier ℂ1 where each decision is associated with a cost, find
a prefix classifier ℂ2 ∈ {ℂ1} such that for any prefix classifier
ℂ ∈ {ℂ1}, the condition Cost(ℂ2) ≤ Cost(ℂ) holds.

We adapt the Weighted 1-Dimensional Prefix List Min-
imization Algorithm in [16] to minimize a partial 1-
dimensional prefix rule list 𝐿 over field 𝐹 as follows. Let
{𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑧} be the set of all the decisions of the rules in
𝐿. Let 𝐿 denote the list of prefix rules that is the complement
of 𝐿 (i.e., any packet has one matching rule in either 𝐿 or 𝐿,
but not both) and each rule in 𝐿 is assigned the same decision
𝑑𝑧+1 that is not in {𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑧}). First, we assign each
decision in {𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑧} a weight of 1 and the decision
𝑑𝑧+1 a weight of ∣𝐷(𝐹)∣, the size of the domain 𝐹 . Second, we
concatenate 𝐿 with 𝐿 to form a complete prefix classifier 𝐿′,
and run the weighted 1-dimensional prefix list minimization
algorithm in [16] on 𝐿′. Since this algorithm outputs a prefix
classifier whose sum of the decision weights is the minimum,
our weight assignment guarantees that decision 𝑑𝑧+1 only
appears in the last rule in the minimized prefix classifier. Let
𝐿′′ be the resulting minimized prefix classifier. Finally, we
remove the last rule from 𝐿′′. The resulting prefix list is the
minimal prefix list that is equivalent to 𝐿.

Continuing the example from Figure 3, we use the partial
prefix list minimization algorithm to minimize each partition
to its minimal prefix representation. In this example, this step
eliminates one rule from the bottom partition.

IV. BIT MERGING

In this section, we present bit merging, the second part of
our bit weaving approach. The fundamental idea behind bit
merging is to repeatedly find in a classifier two ternary strings
that differ only in one bit and replace them with a single
ternary string where the differing bit is ∗.

A. Definitions
Two ternary strings 𝑡1 and 𝑡2 are ternary adjacent if they

differ only in one bit, i.e., their hamming distance [8] is one.
The ternary string produced by replacing the one differing bit
by a ∗ in 𝑡1 (or 𝑡2) is called the ternary cover of 𝑡1 and 𝑡2.
For example, 0∗∗ is the ternary cover of 00∗ and 01∗. We call
the process of replacing two ternary adjacent strings by their
cover bit merging or just merging. For example, we can merge
00∗ and 01∗ to form their cover 0∗∗.

We now define how to bit merge (or just merge) two rules.
For any rule 𝑟, we use ℙ(𝑟) to denote the predicate of 𝑟. Two
rules 𝑟𝑖 and 𝑟𝑗 are ternary adjacent if their predicates ℙ(𝑟𝑖)
and ℙ(𝑟𝑗) are ternary adjacent. The merger of ternary adjacent
rules 𝑟𝑖 and 𝑟𝑗 is a rule whose predicate is the ternary cover of
ℙ(𝑟𝑖) and ℙ(𝑟𝑗) and whose decision is the decision of rule 𝑟𝑖.
We give a necessary and sufficient condition where bit merging
two rules does not change the semantics of a classifier.

Theorem IV.1. Two rules in a classifier can be merged into
one rule without changing the classifier semantics if and only
if they satisfy the following three conditions: (1) they can

be moved to be positionally adjacent without changing the
semantics of the classifier; (2) they are ternary adjacent; (3)
they have the same decision. □

The basic idea of bit merging is to repeatedly find two rules
in the same bit-swapped partition that can be merged based
on the three conditions in Theorem IV.1. We do not consider
merging rules from different bit-swapped partitions because
any two bits from the same column in the two bit-swapped
rules may correspond to different columns in the original rules.

B. Bit Merging Algorithm (BMA)

1) Prefix Chunking: To address the first condition in The-
orem IV.1, we need to quickly determine what rules in a bit-
swapped partition can be moved together without changing the
semantics of the partition (or classifier). For any 1-dimensional
minimum prefix classifier ℂ, let ℂ𝑠 denote the prefix classifier
formed by sorting all the rules in ℂ in decreasing order of
prefix length. We prove that ℂ ≡ ℂ𝑠 if ℂ is a 1-dimensional
minimum prefix classifier in Theorem IV.2.

Before we introduce and prove Theorem IV.2, we first
present Lemma IV.1. A rule 𝑟 is upward redundant if and
only if there are no packets whose first matching rule is 𝑟
[12]. Clearly, upward redundant rules can be removed from a
classifier with no change in semantics.

Lemma IV.1. For any two rules 𝑟𝑖 and 𝑟𝑗 (𝑖 < 𝑗) in a prefix
classifier ⟨𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑛⟩ that has no upward redundant rules,
ℙ(𝑟𝑖) ∩ ℙ(𝑟𝑗) ∕= ∅ if and only if ℙ(𝑟𝑖) ⊂ ℙ(𝑟𝑗). □

Theorem IV.2. For any one-dimensional minimum prefix
packet classifier ℂ, we have ℂ ≡ ℂ𝑠. □

Proof: Consider any two rules 𝑟𝑖, 𝑟𝑗 (𝑖 < 𝑗) in ℂ. If the
prefixes of 𝑟𝑖 and 𝑟𝑗 do not overlap (i.e., ℙ(𝑟𝑖) ∩ ℙ(𝑟𝑗) = ∅),
changing the relative order between 𝑟𝑖 and 𝑟𝑗 does not change
the semantics of ℂ. If the prefixes of 𝑟𝑖 and 𝑟𝑗 do overlap (i.e.,
ℙ(𝑟𝑖) ∩ ℙ(𝑟𝑗) ∕= ∅), then according to Lemma IV.1, we have
ℙ(𝑟𝑖) ⊂ ℙ(𝑟𝑗). This means that ℙ(𝑟𝑖) is strictly longer than
ℙ(𝑟𝑗). This implies that 𝑟𝑖 is also listed before 𝑟𝑗 in ℂ𝑠. Thus,
the result follows.

Based on Theorem IV.2, given a minimum sized prefix bit-
swapped partition, we first sort the rules in decreasing order of
their prefix length. Second, we further partition the rules into
prefix chunks based on their prefix length. By Theorem IV.2,
the order of the rules within each prefix chunk is irrelevant.

2) Bit-Mask Grouping: To address the second condition in
Theorem IV.1, we need to quickly determine what rules are
ternary adjacent. Based on Theorem IV.3, we can significantly
reduce our search space by searching for mergeable rules only
among the rules which have the same bit mask and decision.

Theorem IV.3. Given a list of rules such that the rules have
the same decision and no rule’s predicate is a proper subset
of another rule’s predicate, if two rules are mergeable, then
the bit masks of their predicates are the same.

Proof: Suppose in such a list there are two rules 𝑟𝑖 and
𝑟𝑗 that are mergeable and have different bit masks. Because
they are mergeable, ℙ(𝑟𝑖) and ℙ(𝑟𝑗) differ in only one bit.
Because the bit masks are different, one predicate, say ℙ(𝑟𝑖),

98

must have a ∗ and the other predicate, ℙ(𝑟𝑗), must have a
0 or 1 in that bit column. Thus, ℙ(𝑟𝑗) ⊂ ℙ(𝑟𝑖), which is a
contradiction.

3) Algorithm and Optimality: The bit merging algorithm
(BMA) works as follows. BMA takes as input a minimum,
possibly incomplete prefix classifier ℂ that corresponds to
a cross-free partition generated by bit swapping. BMA first
creates classifier ℂ𝑠 by sorting the rules of ℂ in decreasing
order of their prefix length and partitions ℂ𝑠 into prefix
chunks. Second, for each prefix chunk, BMA groups all the
rules with the same bit mask and decision together, eliminates
duplicate rules, and searches within each group for mergeable
rules. The second step repeats until no group contains rules
that can be merged. Let ℂ′ denote the output of the algorithm.

Figure 4 demonstrates how BMA works. On the leftmost
side is the first partition from Figure 3. On the first pass,
eight ternary rules are generated from the original seven. For
example, the top two rules produce the rule 1000*0** → 1.
These eight rules are grouped into four groups with identical
bit masks. On the second pass, two unique rules are produced
by merging rules from the four groups. Since each rule is
in a separate group, no further merges are possible and the
algorithm finishes. Algorithm 3 shows the general algorithm
for BMA.

Fig. 4. Example of Bit Merging Algorithm Execution

Algorithm 3: Bit Merging Algorithm
Input: A list 𝐼 of 𝑛 rules ⟨𝑟1, . . . , 𝑟𝑛⟩ where each rule has 𝑏

bits.
Output: A list of 𝑚 rules.

Let 𝑆 be the set of rules in 𝐼;1
Let 𝐶 be the partition of 𝑆 such that each partition contains a2
maximal set of rules in 𝑆 where each rule has an identical
bitmask and decision;
Let 𝑂𝑆 be an empty set;3

for each 𝑐 = {𝑟′1, . . . , 𝑟
′
𝑚} ∈ 𝐶 do4

for i := 1 to 𝑚− 1 do5
for j := 𝑖+ 1 to m do6

if ℙ(𝑟′𝑖) and ℙ(𝑟′𝑗) are ternary adjacent then Add7

the ternary cover of ℙ(𝑟′𝑖) and ℙ(𝑟′𝑗) to 𝑂𝑆;

Let 𝑂 be 𝑂𝑆 sorted in decreasing order of prefix length;8
if 𝑆 = 𝑂 then9

return 𝑂;10
else11

return the result of BMA with 𝑂 as input;12

The correctness of this algorithm, ℂ′ ≡ ℂ, is guaranteed
because we only combine mergeable rules. We now prove that
BMA is locally optimal as stated in Theorem IV.4.

Lemma IV.2. During each execution of the second step, BMA
never introduces two rules 𝑟𝑖 and 𝑟𝑗 such that ℙ(𝑟𝑖) ⊂ ℙ(𝑟𝑗)
where both 𝑟𝑖 and 𝑟𝑗 have the same decision. □

Lemma IV.3. Consider any prefix chunk in ℂ𝑠. Let 𝑘 be the
length of the prefix of this prefix chunk. Consider any rule 𝑟
in ℂ′ that was formed from this prefix chunk. The 𝑘th bit of 𝑟
must be 0 or 1, not ∗. □

Theorem IV.4. The output of BMA, ℂ′, contains no pair of
mergeable rules.

Proof: Within each prefix chunk, after applying BMA,
there are no pairs of mergeable rules for two reasons. First,
by Theorem IV.3 and Lemma IV.2, in each run of the second
step of the algorithm, all mergeable rules are merged. Second,
repeatedly applying the second step of the algorithm guaran-
tees that there are no mergeable rules in the end.

We now prove that any two rules from different prefix
chunks cannot be merged. Let 𝑟𝑖 and 𝑟𝑗 be two rules from two
different prefix chunks in ℂ′ with the same decision. Suppose
𝑟𝑖 is from the prefix chunk of length 𝑘𝑖 and 𝑟𝑗 is from the
prefix chunk of length 𝑘𝑗 where 𝑘𝑖 > 𝑘𝑗 . By Lemma IV.3, the
𝑘𝑖-th bit of 𝑟𝑖’s predicate must be 0 or 1. Because 𝑘𝑖 > 𝑘𝑗 ,
the 𝑘𝑖-th bit of 𝑟𝑗’s predicate must be ∗. Thus, if 𝑟𝑖 and 𝑟𝑗 are
mergeable, then 𝑟𝑖 and 𝑟𝑗 should only differ in the 𝑘𝑖-th bit
of their predicates, which means ℙ(𝑟𝑖) ⊂ ℙ(𝑟𝑗). This conflicts
with Lemma IV.2.

Continuing the example in Figure 3, we perform bit merging
on both partitions to reduce the first partition to two rules.
Finally, we revert each partition back to its original bit order.
After reverting each partition’s bit order, we recover the
complete classifier by appending the partitions together. In
Figure 3, the final classifier has four rules.

V. DISCUSSION

A. Redundancy Removal
Our bit weaving algorithm uses the redundancy removal

procedure [12] as both the preprocessing and postprocessing
step. We apply redundancy removal at the beginning because
redundant rules may introduce more cross patterns. We apply
redundancy removal at the end because our incomplete 1-
dimensional prefix list minimization algorithm may introduce
redundant rules across different partitions.

B. Incremental Classifier Updates
Classifier rules periodically need to be updated when net-

working services change. When classifiers are updated man-
ually by network administrators, timing is not a concern and
rerunning the fast bit weaving algorithm will suffice. When
classifiers are updated automatically in an incremental fashion,
fast updates may be very important.

Bit weaving supports efficient incremental classifier updates
by confining change impact to one cross-free partition. An
incremental classifier change is typically inserting a new
rule, deleting an existing rule, or modifying a rule. Given
a change, we first locate the cross-free partition where the
change occurs by consulting a precomputed list of all the rules
in each partition. Then we rerun the bit weaving algorithm
on the affected partition. We may need to further divide the
partition into two cross-free partitions if the change introduces
a cross pattern. Note that deleting a rule never introduces cross
patterns. We generated our partitions by processing rules in

99

reverse order because new rules are most likely to be placed
at the front of a classifier.

The experimental data used in Section VI indicates that
only 2.7% of partitions have more than 32 rules and 0.6% of
partitions have more than 128 rules for real life classifiers. For
synthetic classifiers, these percentages are 17.3% and 0.9%,
respectively. For these classifiers, incremental classifier up-
dates are fast and efficient. To further evaluate the incremental
update times, we divided each classifier into a top half and a
bottom half. We constructed a classifier for the bottom half and
then incrementally added each rule from the top half classifier.
Using this test, we found that incrementally adding a single
rule takes on average 2ms with a standard deviation of 4ms
for real world classifiers, and 6ms with a standard deviation
of 5ms for synthetically generated classifiers.

C. Composability of Bit Weaving
Bit weaving, like redundancy removal, never returns a

classifier that is larger than its input. Thus, bit weaving, like
redundancy removal, can be composed with other classifier
minimization schemes. Since bit weaving is an efficient al-
gorithm, we can apply it as a postprocessing step with little
performance penalty. As bit weaving uses techniques that are
significantly different than other compression techniques, it
can often provide additional compression.

We can also enhance other compression techniques by
using bit weaving, in particular bit merging, within them.
Specifically, multiple techniques [5], [16]–[18], [20] rely on
generating single field TCAM tables. These approaches gen-
erate minimal prefix tables, but minimal prefix tables can be
further compressed by applying bit merging. Therefore, every
such technique can be enhanced with bit merging (or more
generally bit weaving).

For example, TCAM Razor [16] compresses multiple field
classifiers by converting a classifier into multiple single field
classifiers, finding the minimal prefix classifiers for these
classifiers, and then constructing a new prefix field classifier
from the prefix lists. A natural enhancement is to use bit
merging to convert the minimal prefix rule lists into smaller
non-prefix rule lists. In our experiments, bit weaving enhanced
TCAM Razor yields significantly better compression results
than TCAM Razor alone.

Range encoding techniques [5], [15], [18], [20], [26] can
also be enhanced by bit merging. Range encoding techniques
require lookup tables to encode fields of incoming packets.
When such tables are stored in TCAM, they are stored as
single field classifiers. Bit merging offers a low cost method
to further compress these lookup tables. Our results show that
bit merging significantly compresses the lookup tables formed
by the topological transformation technique [18].

D. Complexity Analysis
The most computationally expensive stage of bit weaving is

bit merging. With the application of the binomial theorem, we
arrive at a worst case time complexity of 𝑂(b×𝑛

5
2) where

𝑏 is the number of bits within a rule predicate, and 𝑛 is
the number of rules in the input. Therefore, bit weaving is
the first polynomial-time algorithm with a worst-case time
complexity that is independent of the number of fields in

that classifier. This complexity analysis excludes redundancy
removal because redundancy removal is an optional pre/post-
processing step. The space complexity of bit weaving is
dominated by finding the minimum prefix list. For a complete
complexity analysis of bit weaving, see [19].

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and efficiency
of bit weaving on both real-world and synthetic packet clas-
sifiers. First, we compare the relative effectiveness of Bit
Weaving (BW) and the state-of-the-art classifier compression
scheme, TCAM Razor (TR) [16]. Then, we evaluate how much
additional compression results from enhancing prior compres-
sion techniques TCAM Razor and Topological Transformation
(TT) [18] with bit weaving.

A. Evaluation Metrics and Data Sets
We first define the following notation. We use 𝐶 to denote

a classifier, ∣𝐶∣ to denote the number of rules in 𝐶, 𝑆 to
denote a set of classifiers, 𝐴 to denote a classifier minimization
algorithm, A(𝐶) to denote the classifier produced by applying
algorithm 𝐴 on 𝐶, and Direct(𝐶) to denote the classifier
produced by applying direct prefix expansion on 𝐶.

We define six basic metrics for assessing the performance
of classifier minimization algorithm 𝐴 on a set of classifiers
𝑆 as shown in Table II. The improvement ratio of 𝐴′ over 𝐴
assesses how much additional compression is achieved when
adding 𝐴′ to 𝐴. 𝐴 does well when it achieves small com-
pression and expansion ratios and large improvement ratios.

Compression Ratio
Average Total

𝛴𝐶∈𝑆
∣A(𝐶)∣

∣Direct(𝐶)∣

∣𝑆∣

𝛴𝐶∈𝑆 ∣A(𝐶)∣

𝛴𝐶∈𝑆 ∣Direct(𝐶)∣

Expansion Ratio
Average Total

𝛴𝐶∈𝑆
∣A(𝐶)∣
∣𝐶∣

∣𝑆∣

𝛴𝐶∈𝑆 ∣A(𝐶)∣

𝛴𝐶∈𝑆 ∣𝐶∣

Improvement Ratio
Average Total

𝛴𝐶∈𝑆
∣A(𝐶)∣−∣A′(𝐶)∣

∣A(𝐶)∣

∣𝑆∣

𝛴𝐶∈𝑆 ∣A(𝐶)∣−∣A′(𝐶)∣

𝛴𝐶∈𝑆 ∣A(𝐶)∣

TABLE II
METRICS FOR 𝐴 ON A SET OF CLASSIFIERS 𝑆

We use 𝑅𝐿 to denote a set of 25 real-world packet classifiers
that we performed experiments on. The classifiers range in size
from a handful of rules to thousands of rules. We obtained 𝑅𝐿
from several network service providers where many classifiers
from the same provider are structurally similar varying only in
the IP prefixes of some rules. When we run any compression
algorithms on these structurally similar classifiers, we get
essentially identical results. We eliminated the resulting double
counting of results that would bias the resulting averages
by randomly choosing a single classifier from each set of
structurally similar classifiers to be in 𝑅𝐿. We then split
𝑅𝐿 into two groups, 𝑅𝐿𝑎 and 𝑅𝐿𝑏, where the expansion
ratio of direct expansion is less then 2 in 𝑅𝐿𝑎 and the
expansion ratio of direct expansion is greater than 40 in 𝑅𝐿𝑏.
We have no classifiers where the expansion ratio of direct
expansion is between 2 and 40. It turns out ∣𝑅𝐿𝑎∣ = 12 and
∣𝑅𝐿𝑏∣ = 13. By separating these classifiers into two groups,
we can determine how well our techniques work on classifiers

100

0 2 4 6 8 10 12
Classifier

0

20

40

60

80

100
C

o
m

p
re

ss
io

n
 R

a
ti

o
 (

P
e
rc

e
n
ta

g
e
) TCAM Razor

Bit Weaving

Fig. 5. Compression ratio for 𝑅𝐿𝑎

0 2 4 6 8 10 12 14
Classifier

0

1

2

3

4

5

6

7

8

9

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

P
e
rc

e
n
ta

g
e
) TCAM Razor

Bit Weaving

Fig. 6. Compression ratio for 𝑅𝐿𝑏

0 2 4 6 8 10 12
Classifier

0

20

40

60

80

100

120

E
x
p
a
n
si

o
n
 R

a
ti

o
 (

P
e
rc

e
n
ta

g
e
)

TCAM Razor
Bit Weaving

Fig. 7. Expansion ratio for 𝑅𝐿𝑎

0 2 4 6 8 10 12 14
Classifier

0

100

200

300

400

500

600

700

E
x
p
a
n
si

o
n
 R

a
ti

o
 (

P
e
rc

e
n
ta

g
e
)

TCAM Razor
Bit Weaving

Fig. 8. Expansion ratio for 𝑅𝐿𝑏

0 2 4 6 8 10 12
Classifier

0

10

20

30

40

50

60

Im
p
ro

v
e
m

e
n
t

R
a
ti

o
 (

P
e
rc

e
n
ta

g
e
) TCAM Razor

Topo. Trans.

Fig. 9. Improvement for 𝑅𝐿𝑎

0 2 4 6 8 10 12 14
Classifier

0

10

20

30

40

50

60

Im
p
ro

v
e
m

e
n
t

R
a
ti

o
 (

P
e
rc

e
n
ta

g
e
) TCAM Razor

Topo. Trans.

Fig. 10. Improvement for 𝑅𝐿𝑏

that do suffer significantly from range expansion as well as
those that do not.

Due to security concerns, it is difficult to acquire a large
quantity of real-world classifiers. We generated a set of 150
synthetic classifiers 𝑆𝑌 𝑁 with the number of rules ranging
from 250 to 8000. The predicate of each rule has five fields:
source IP, destination IP, source port, destination port, and
protocol. We based our generation method upon Singh et al.’s
[21] model of synthetic rules. We also performed experiments
on 𝑇𝑅𝑆, a set of 490 classifiers produced by Taylor&Turner’s
Classbench [25]. These classifiers were generated using the
parameters files downloaded from Taylor’s web site (http:
//www.arl.wustl.edu/∼det3/ClassBench/index.htm). To represent a
wide range of classifiers, we chose a uniform sampling of
the allowed values for the parameters of smoothness, address
scope, and application scope.

To stress test the sensitivity of our algorithms to the number
of classifier decisions, we created a set of classifiers RL𝑈 (and
thus RLa𝑈 and RLb𝑈) by replacing the decision of every rule
in each classifier by a unique decision. Similarly, we created
the set 𝑆𝑌 𝑁𝑈 . Thus, each classifier in RL𝑈 (or SYN 𝑈) has
the maximum possible number of distinct decisions.
B. Effectiveness of Bit Weaving Alone

Table III shows the average and total compression ratios,
and the average and total expansion ratios for TCAM Razor
and Bit Weaving on all nine data sets. Figures 5 and 6 show the
specific compression ratios for all of our real-world classifiers,
and Figures 7 and 8 show the specific expansion ratios for all
of our real-world classifiers. Clearly, bit weaving is an effective
algorithm with an average compression ratio of 23.6% on our
real-world classifiers and 34.6% when these classifiers have
unique decisions. This is very similar to TCAM Razor, the
previous best known-compression method.

One interesting observation is that TCAM Razor and bit
weaving seem to be complementary techniques. That is,
TCAM Razor and bit weaving seem to find and exploit
different compression opportunities. Bit weaving is more
effective on 𝑅𝐿𝑎 while TCAM Razor is more effective on
𝑅𝐿𝑏. TCAM Razor is more effective on classifiers that suffer
from range expansion because it has more options to mitigate
range expansion including introducing new rules to eliminate
bad ranges. On the other hand, by exploiting non-prefix
optimizations, bit weaving’s ability to find rules that can be
merged is more effective than TCAM Razor on classifiers that
do not experience significant range expansion.

C. Improvement Effectiveness of Bit Weaving
Table III shows the improvement to average and total

compression and expansion ratios when TCAM Razor and
Topological Transformation are enhanced with bit weaving on
all nine data sets. Figures 9 and 10 show how bit weaving
improved compression for each of our real-world classifiers.

Our results for enhancing TCAM Razor with bit weaving
is actually the best result from three different possible com-
positions: bit weaving alone, TCAM Razor followed by bit
weaving, and a TCAM Razor algorithm that uses bit merging
to generate non-prefix classifiers. Topological Transformation
is enhanced by performing bit merging on each of its encod-
ing tables. We do not perform bit weaving on the encoded
classifier because the nature of Topological Transformation
produces encoded classifiers that do not benefit from non-
prefix encoding. Therefore, for Topological Transformation,
we report only the improvement to storing the encoding tables.

Bit weaving significantly improves both TCAM Razor and
Topological Transformation with an improvement ratio of
12.8% and 38.9%, respectively. TCAM Razor and bit weaving

101

Compression Ratio Expansion Ratio Improvement Ratio
Average Total Average Total Average Total

TR BW TR BW TR BW TR BW TR TT TR TT
𝑅𝐿 24.5 % 23.6 % 8.8 % 10.7 % 59.8 % 222.9 % 30.1 % 36.8 % 12.8 % 36.5 % 12.8 % 38.9 %
𝑅𝐿𝑎 50.1 % 44.0 % 26.7 % 23.7 % 54.6 % 48.0 % 29.0 % 25.7 % 11.9 % 40.4 % 12.7 % 39.9 %
𝑅𝐿𝑏 0.8 % 4.8 % 0.8 % 5.0 % 64.7 % 384.3 % 65.1 % 397.7 % 13.6 % 32.8 % 14.3 % 34.7 %
𝑅𝐿𝑈 31.9 % 34.6 % 13.1 % 17.1 % 146.2 % 465.5 % 45.0 % 58.8 % 3.5 % 35.6 % 2.8 % 38.2 %
𝑅𝐿𝑎𝑈 62.9 % 61.6 % 36.0 % 35.0 % 68.7 % 67.2 % 39.1 % 38.0 % 2.0 % 40.6 % 2.9 % 39.3 %
𝑅𝐿𝑏𝑈 3.3 % 9.6 % 3.0 % 9.2 % 217.7 % 833.1 % 237.6 % 732.6 % 4.8 % 30.9 % 2.1 % 32.7 %
𝑆𝑌 𝑁 10.4 % 9.7 % 7.8 % 7.3 % 12.3 % 11.5 % 9.3 % 8.7 % 8.1 % 42.0 % 9.4 % 43.2 %
𝑆𝑌 𝑁𝑈 42.7 % 41.2 % 38.4 % 36.2 % 50.8 % 49.0 % 45.8 % 43.2 % 3.9 % 43.3 % 5.7 % 44.1 %
𝑇𝑅𝑆 13.8 % 7.8 % 20.6 % 10.3 % 41.7 % 21.3 % 45.2 % 22.7 % 32.9 % 34.0 % 49.7 % 33.6 %

TABLE III
EXPERIMENTAL RESULTS FOR ALL DATA SETS

exploit different compression opportunities so they compose
well. Bit weaving significantly helps Topological Transforma-
tion because each encoding table of Topological Transforma-
tion is essentially the projection of the classifier along the
given field. Thus each encoding table contains every relevant
range in that field. This leads to non-adjacent intervals with
the same decision that can benefit from bit merging.

D. Efficiency
We implemented all algorithms on Microsoft .Net frame-

work 2.0. Our experiments were carried out on a desktop
PC running Windows XP with 8G memory and a single 2.81
GHz AMD Athlon 64 X2 5400+. All algorithms used a single
processor core. On 𝑅𝐿, the minimum, mean, median, and
maximum running times of our bit weaving algorithm (ex-
cluding the time of running the redundancy removal algorithm
before and after running our bit weaving algorithm) were
0.0002, 0.0339, 0.0218, and 0.1554 seconds, respectively; on
𝑅𝐿𝑈 , the minimum, mean, median, and maximum running
times of our bit weaving algorithm were 0.0003, 0.2151,
0.0419, and 1.7842 seconds, respectively. On synthetic rules,
the running time of bit weaving grows linearly with the number
of rules in a classifier, where the average running time for
classifiers of 8000 rules is 0.2003 seconds.

VII. CONCLUSION

Bit weaving is the first TCAM compression method that
can create non-prefix field classifiers and runs in polynomial
time regardless of the number of fields in each rule. It also
supports fast incremental updates to classifiers, and it can be
deployed on existing classification hardware. Given its speed
and its ability to find different compression opportunities than
existing compression schemes, bit weaving should always be
used, either by itself or as a postprocessing routine, whenever
TCAM classifier compression is needed.

REFERENCES

[1] Integrated Device Technology, Inc. Content addressable memory.
http://www.idt.com/.

[2] B. Agrawal and T. Sherwood. Modeling tcam power for next generation
network devices. In Proc. IEEE Int. Symposium on Performance Analysis
of Systems and Software, pages 120– 129, 2006.

[3] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett,
and J. Wang. Compressing rectilinear pictures and minimizing access
control lists. In Proc. (SODA), January 2007.

[4] A. Bremler-Barr and D. Hendler. Space-efficient TCAM-based classifi-
cation using gray coding. In Proc. (Infocom), May 2007.

[5] H. Che, Z. Wang, K. Zheng, and B. Liu. DRES: Dynamic range encod-
ing scheme for tcam coprocessors. IEEE Transactions on Computers,
57(7):902–915, 2008.

[6] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet
classifiers in ternary CAMs can be smaller. In Proc. ACM Sigmetrics,
pages 311–322, 2006.

[7] R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal
IP routing tables. In Proc. IEEE INFOCOM, pages 88–97, 1999.

[8] R. W. Hamming. Error detecting and correcting codes. Bell Systems
Technical Journal, 29:147–160, April 1950.

[9] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms
for advanced packet classification with ternary CAMs. In Proc. ACM
SIGCOMM, pages 193 – 204, August 2005.

[10] C. Lambiri. Senior staff architect IDT, private communication. 2008.
[11] P. C. Lekkas. Network Processors - Architectures, Protocols, and

Platforms. McGraw-Hill, 2003.
[12] A. X. Liu and M. G. Gouda. Complete redundancy detection in firewalls.

In Proc. 19th Annual IFIP Conf. on Data and Applications Security,
LNCS 3654, pages 196–209, August 2005.

[13] A. X. Liu and M. G. Gouda. Complete redundancy removal for packet
classifiers in tcams. IEEE Transactions on Parallel and Distributed
Systems (TPDS), to appear.

[14] A. X. Liu, C. R. Meiners, and Y. Zhou. All-match based complete
redundancy removal for packet classifiers in TCAMs. In Proc. IEEE
Infocom, April 2008.

[15] H. Liu. Efficient mapping of range classifier into Ternary-CAM. In
Proc. Hot Interconnects, pages 95– 100, 2002.

[16] C. R. Meiners, A. X. Liu, and E. Torng. TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs. In Proc.
IEEE ICNP, pages 266–275, October 2007.

[17] C. R. Meiners, A. X. Liu, and E. Torng. Algorithmic approaches to
redesigning tcam-based systems [extended abstract]. In Proc. ACM
SIGMETRICS, June 2008.

[18] C. R. Meiners, A. X. Liu, and E. Torng. Topological transformation
approaches to optimizing tcam-based packet processing systems. In
Proc. ACM SIGCOMM (poster session), August 2008.

[19] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-prefix
approach to compressing packet classifiers in tcams. Technical Report
MSU-CSE-09-1, Department of Computer Science and Engineering,
Michigan State University, January 2009.

[20] D. Pao, P. Zhou, B. Liu, and X. Zhang. Enhanced prefix inclusion coding
filter-encoding algorithm for packet classification with ternary content
addressable memory. Computers & Digital Techniques, IET, 1:572–580,
April 2007.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proc. ACM SIGCOMM, pages 213–
224, 2003.

[22] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using
extended TCAMs. In Proc. IEEE ICNP, pages 120– 131, November
2003.

[23] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional
routing tables. Algorithmica, 35:287–300, 2003.

[24] D. E. Taylor. Survey & taxonomy of packet classification techniques.
ACM Computing Surveys, 37(3):238–275, 2005.

[25] D. E. Taylor and J. S. Turner. Classbench: A packet classification
benchmark. In Proc. IEEE Infocom, March 2005.

[26] J. van Lunteren and T. Engbersen. Fast and scalable packet classification.
IEEE Journals on Selected Areas in Communications, 21(4):560– 571,
2003.

[27] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA: A power
and memory efficient scheme to multi-match packet classification. In
Proc. ANCS, pages 105–113, October 2005.

[28] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang. DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding.
IEEE Transactions on Computers, 55(8):947–961, 2006.

[29] K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-based distributed parallel
ip lookup scheme and performance analysis. IEEE/ACM Transactions
on Networking, 14(4):863–875, 2006.

102

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

