Balancing Performance and Efficiency in a Robotic Fish with Evolutionary Multiobjective Optimization

Anthony J. Clark, Jianxun Wang, Xiaobo Tan, and Philip K. McKinley

Michigan State University, East Lansing, MI, USA
Motivations

Optimize Robotic Fish with Flexible Fins

Optimize for
– performance AND
– efficiency

While matching flexibility with control settings
Robotic Fish

Biomimetic Robots

Compared with other aquatic robots
- Smaller in size
- More maneuverable

Actuation
- less complex
- fewer moving parts
Robotic Fish

Biomimetic Robots

Compared with other aquatic robots
- Smaller in size
- More maneuverable

Actuation
- less complex
- fewer moving parts

Challenges

Complex environment
- turbulence

Flexible components
- changing performance

Limited supervision
- poor communication
Applications
This Paper

- **Maximize** efficiency
 - focus of several recent studies [Low 2010, Park 2012]
 - important due to lack of supervision
 - remain operational as long as possible

- **Maximize** average velocity

- **Constraints**
 - maximum power exerted by the motor
 - ratio of length to width for the caudal fin
Search Space

Pareto-optimal
- best solutions

Dominated
- sub-optimal solutions

Infeasible
- violate constraints

Impossible
- unachievable

This study: NSGA-II [Deb 2000]
Computational Evolution

• Fin characteristics
 – flexibility
 – length
 – height
• Control parameters
 – sinusoidal amplitude
 – sinusoidal frequency

• Why evolutionary multiobjective optimization?
 – fewer evaluations and more effective than parameter sweep
 – avoid local optima
Flexible Fins
3D Printing Composite Fins
Efficient Simulation

MATLAB / Simulink

Hydrodynamics
- developed by Wang et al. [Wang 2012, Clark 2012]
- faster and less accurate compared to CFD

Flexibility
- rigid bodies
- torsion springs (can be converted to Young’s modulus values)
Evolutionary Optimization

Task: quick and efficiently forward swimming

- Evolve
 - fin flexibility
 - fin dimensions
 - sinusoidal control parameters

- NSGA-II parameters
 - 200 individuals in the population
 - 500 generations for convergence
 - 20 replicate experiments
Final Combined Pareto-Front

• Efficiency
 – 35 to 40 percent
 – similar to values found in other studies

• Velocity
 – 4.8 to 5.8 cm/s
Caudal Fin Length

Length vs Speed

Length vs Efficiency
Discussion

Guidelines
1. Flexible fins are more efficient
2. Length-height ratio of 3-to-1
3. Fin length ½ the length of the body
4. Increase speed by increasing amplitude

Choosing a single Pareto-optimal value is specific to the task given to the robotic fish.
- example: robotic fish needs to operate for 1 hour
- choose the fastest solution that is within the bounds for efficiency
Physical Trials

![Combined Pareto-Front Graph](image)

<table>
<thead>
<tr>
<th>Label</th>
<th>Simulation (cm/s)</th>
<th>Reality (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin1</td>
<td>5.17</td>
<td>7.43</td>
</tr>
<tr>
<td>Fin2</td>
<td>5.39</td>
<td>4.00</td>
</tr>
<tr>
<td>Fin3</td>
<td>5.62</td>
<td>5.00</td>
</tr>
<tr>
<td>Fin4</td>
<td>4.97</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Physical Results

Reality gap
 – different dynamics
 – printing fins
 – noisier control

Pareto-front clustering
 – all are good solutions
 – tight clustering between solutions
Summary

In this study we,

– optimized a robotic fish for two objectives
 • objectives: speed and efficiency
 • evolved parameters: fin morphology and control
– we found a set of guidelines for designing robotic fish of similar builds
– however, physical results are somewhat inconclusive and will need to be expanded
Ongoing Research

How can we improve the transferability of evolved individuals?
 – cross the reality gap through adaptive control

How can we get better generality during evolution?
 – operate under different control conditions
 – more complex tasks

How advantageous are more complex fins?
 – include non-rectangular fins
 – include non-uniform flexibility fins
Thank You

The authors gratefully acknowledge the contributions and feedback on the work provided by:

– Jared Moore and
– the BEACON Center at Michigan State University.

This work was supported in part by National Science Foundation grants IIS-1319602, CCF-1331852, CNS-1059373, CNS-0915855, and DBI-0939454, and by a grant from Michigan State University.
References

[Clark 2012] : *Evolutionary design and experimental validation of a flexible caudal fin for robotic fish.*

Park [2012] : *Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin.*