Autonomous Mental Development:
Workshop on Development and Learning (WDL)

Juyang Weng and Ida Stockman

This report describes a Workshop on mental development and learning issues that are relevant to both machine and human sciences. It was jointly funded by the National Science Foundation (NSF) and the Defense Advanced Research Projects Agency (DARPA) and held at Michigan State University April 5-7, 2000.

1. Workshop Objectives

The workshop was motivated by the budding research area that is dedicated to the idea of building autonomous developmental robots; i.e., machines that develop mental skills through online, real-time interactive experiences in the real physical environment. At the same time, developments in the human sciences are opening up new possibilities for studying humans in ways that can benefit the goal of creating more intelligent machines. New findings in the neurosciences are revealing that the animal brain is more flexible or plastic than previously thought. Psychologists are demonstrating that the contexts of experience can be manipulated to reveal that human infants are capable of learning a broader range of mental skills than was previously assumed possible. These emerging scientific fronts in machine and human learning create the possibility to scale up our understanding of mental development in complementary ways.

On the one hand, psychologists historically concerned with the development of the mind, have produced important findings, but computational studies of mental development, which are demanded by better understanding of both human and machine intelligences, have been lacking. On the other hand, traditional research paradigms in machine learning have been fruitfully informed by models of human learning. However, existing on-line learning techniques typically applied to robot learning (e.g., [1]) differ fundamentally from human learning. On-line root learning using robot sensors is not equivalent to autonomous mental development in robots. Nor should mental development be viewed simply as an incremental learning system that grows from small to big in terms of its memory size. Such systems already exist (e.g., systems that use neural network techniques).

There is a need, therefore, for increased studies in computational autonomous mental development (CAMD) that are of interest to both machine and human intelligence researchers. The Workshop was motivated generally by the need to form a new alliance among the disciplines concerned with mental development in machines or humans. The Workshop provided a forum for articulating a new research direction and basis for scholarly collaboration across related disciplines. This was the first workshop dedicated solely to this new direction, CAMD. The Workshop was intended to be a catalyst for creating a new research community interested in advancing the science within this new paradigm.

What are the central issues of CAMD by robots and animals? What does neuroscience tell us about mental development? What computational studies for mental development are needed in neuroscience and psychology? How does a robot develop its cognitive and behavioral skills autonomously? Answers to these and other related questions have potential to advance AI. Further, they may also affect human life in ways that have practical consequences. For example, developmental machines may be created and used to interact with humans and help them to learn. Intelligent developmental robots also can be used to test models of human mental development and learning. The power to computationally model human mental development and learning well enough to predict particular behavioral outcomes would reflect better understanding of the processes that result in different human behavioral outcomes. As a result, it may be
possible to manipulate the processes well enough to create more sophisticated learning tools or procedures that enhance normal and abnormal human learning.

2. Planning and Organization

A grant jointly awarded by NSF/DARPA enabled us (Co-PIs) to plan and conduct such a workshop. Participants attended by invitation only. They represented multiple disciplines that included developmental and cognitive psychology, neuroscience, robotics and artificial intelligence. The accepted invited submissions appeared in the WDL proceedings as Related Working Papers at the conference, and can be obtained upon request. In the month preceding the conference (March, 2000), a pre-workshop email discussion among potential participants was initiated to stimulate discussion on the Workshop themes. These discussion items are still available under the Email Forum at the WDL web site: (http://www.cse.msu.edu/dl/).

3. Workshop Schedule

The Workshop was convened April 5-7, 2000 at Michigan State University’s Kellogg Conference and Hotel Center. The participants included more than 30 invited scholars, most of whom resided in the U.S. As planned, the first two days of the Workshop were devoted to focal scholarly exchanges in four designated research areas: developmental psychology, computational modeling, neuroscience, and robotics. The third and final day focused on future directions. Both morning and afternoon sessions during the first two days were structured to include: (1) an overview talk that identified relevant major issues, in a field, (2) short respondent papers that addressed related themes, and (3) an hour-long spontaneous discussion period. On the third day, an hour-long discussion followed several short overview talks. The last in the afternoon session was devoted to open discussion from the floor.

4. Presentations and Discussions

The Workshop discussion included neuroscientists whose studies have provided a window for better understanding brain development. Neuroscientist Marinka Sur presented research in which the optic nerves originating from the eyes were rewired into the auditory cortex of an animal (a ferret) early in life [2]. They found that the rewired auditory cortex gradually takes on a representation that is normally observed in visual cortex. Further, the animals successfully learned to perform visual tasks using the auditory cortex. In other words, the rewired ferrets can see using the brain zone that is normally assigned to sound. This discovery suggests that the cortex is governed by self-organizing mechanisms that can derive their representation and even partial architecture from either visual or auditory input signals. An interesting question to ask is: Is there a set of general developmental mechanisms that is applicable to vision, audition and touch?

If the genetically assigned hearing zone of a newborn can be developed into a seeing zone, how rigid is the brain of an adult? Neuroscientist Michael M. Merzenich presented evidence for great plasticity in the adult brain of nonhuman primates [3]. He and his colleagues have shown that finger skin areas from which a neuron in somatic cortex receives sensory signals (called the receptive field of the neuron) can change according to sensory experience. If multiple fingers of the adult monkey receive consistent synchronized pulse stimuli from a cross-finger bar for several days, the receptive field changes drastically, from covering only a single finger in typical cases to covering multiple fingers. This study seems to demonstrate that the brain’s self-organizing program still automatically selects the source of
sensory input within a candidate area according to the statistical properties of the actual sensory signal that is received. How plastic should a developmental robot be?

Developmental Psychologists, Esther Thelen [4], Rachel Clifton, Neil Berthier, and Kurt Fischer discussed studies of early human cognition from a dynamic systems theory perspective. This view grounds mental learning and developing in the physical contexts of sensori-motor body interactions with the environment. What is known is that normal mental development is context dependent and inseparable from the biological, social and psychological contexts of experience. Psychologists, Kim Plunkett, James McClelland and Nestor Schmajuk presented their studies and theoretical perspectives on mental development from a neural network point of view. Kim Plunkett, a co-author of a recent book titled “Rethinking Innateness” [5], summarized studies about the plasticity of the cortex for generating representations according to the signals it receives. James McClelland suggested that Hebbian learning mechanism may play an important role in cortical development. Nestor Schmajuk presented computational models for autonomous animal learning based on classical and instrumental conditioning, attention and model generation about the environment. He proposed that the ideas of these learning models could also be used for robots.

Computer scientists and robot researchers, Tomaso Poggio, Roderic Grupen, Maja Mataric and Brian Scassellati presented their work on computational learning based on network, Markov decision process and behavior-based approaches. Although they have not yet reached a fully autonomous developmental system with incrementally self-generated representation, these studies are motivated by human animal development or learning. For example, the work of Cog project by Rodney Brooks and other coworkers [6], presented by Brian Scassellati at the Workshop, is motivated by child cognitive development in infancy. Alex Pentland discussed work which has associated video images of an object with a synchronized voice (i.e., pronounced the verbal name of an object) [7]. Computer scientist Stephen Levinson’s past work focused on machine recognition of speech and language modeling. He suggested that a breakthrough in speech recognition is unlikely without a fundamental change of methodology. He has started working on a project that enables a mobile robot to develop its auditory capability through interaction with the environment.

Early examples of fully autonomous developmental robots include the Darwin V robot at The Neurosciences Institute in San Diego, California and the SAIL robot at Michigan State University, developed independently around the same time but with very different goals. Gerald Edelman and Olaf Sporns presented their work around Darwin V [8], whose goal was to provide a concrete example of how the properties of more complex and realistic neural circuits are determined by the behavioral and environmental interactions of an autonomous device. Darwin V has been tested for the development of generalization behaviors in response to visual stimuli at different positions and orientations (visual invariance learning). It has been shown that through real-time interaction with this environment, the robot can develop more complex behaviors from simpler ones.

SAIL was designed as an engineering test bed for developmental programs that are meant for scaling up to complex cognitive and behavioral capabilities in uncontrolled environments [9][10]. Juyang Weng presented the design principles of SAIL-3 developmental program with a goal to autonomously develop some cognitive skills for vision, speech, touch through real-time interaction with the environment. The SAIL developmental program does not require two separate modes, a training mode and a performance mode. SAIL robot learns while performing, under the same operational mode so that it can truly scale up. Weng called it autonomous animal-like learning.

Technically, Weng explained how a real-time speed with a large memory, as well as autonomous derivation of high dimensional discriminating features, is achieved by an incremental high-dimensional mapping engine called hierarchical discriminate regression (HDR) [11]. He suggested that a true developmental program must autonomously and incrementally generate representations online from sensory and effector signals. Such representations include filters, feature spaces, clusters in feature spaces, feature hierarchies.
(architecture), internal effectors (e.g., for internal attention) and the association of response in self-generated context representation with the corresponding actions and their expected values.

5. Future Research Issues

The Workshop dedicated a half-day to identifying future research issues. Christopher Brown, Olaf Sporns, Juyang Weng and Stan Franklin presented their related work, research challenges and possible future research topics.

Some researchers pointed out that to truly scale up cognitive capabilities, fully autonomous online, real-time mental developmental robots are necessary, which in turn requires a fundamental paradigm change [12]. Such robots are also necessary for integration of wide variety of perceptual and behavioral capabilities. A fundamental characteristic that distinguishes a developmental program from all other programs is that it is not task specific --- the tasks that the robot will learn are not known to the programmer at the programming time.

Some researchers hold the view that the task-nonspecific nature of mental development should make the studies of intelligence and realization of intelligence easier than the traditional task-specific approaches. This is true both for human subjects (neuroscience and psychology) and machine subjects (AI and robotics). From the computational view of mental development, the research issues center around how to autonomous generate internal representations from sensory and effector signals.

This new research area opens up a series of very interesting and yet manageable new research topics for fields that study either human or machine subjects. Some of the tractable research topics suggested at the Workshop include:

1. **Representation from sensory signals**: Schemes for automatic derivation of mental representations from sensory signals that are sensed from the environment and the body.
2. **Representation from effector signals**: Schemes for automatic derivation of representation from effector signals, available from practice experience.
3. **Automatic derivation of receptive fields, in both the classic and non-classic sense**: That is, how later processing elements by the brain can group outputs from earlier processing elements or sensory elements.
4. **Long term memory growth, self-organization and retrieval for high-dimensional neural signal vectors**: This type of real-time memory engine serves the role of cortex. It must be scalable (e.g., logarithmic time complexity in memory size) so that it is always real-time when the memory grows.
5. **Working memory formation and self-organization for high-dimensional neural signal vectors**: The working memory may include short-term sensory memory and system states as currently attended context.
6. **Developmental mechanisms for mediation of conscious and unconscious behaviors**: That is, those for mediation among higher and lower level behaviors, such as learned behaviors, learned and innate emotional behaviors and reflexes.
7. **Mechanisms for developing internal behaviors**: Namely, those that operate on internal nervous components, including selective attention. This subject includes both developmental mechanisms and training strategies for humans and robots.
8. **Attention-directed time warping from continuous states**: The time warping issue concerns the time inconsistency between different instances of experience, with the goal of both discrimination and generalization.
9. **Autonomous action imitation and self-improvement**: The developmental mechanisms underlying an improved behavioral pattern that results from individual online instances of related experience.
10. **Mechanisms for communicative learning and autonomous thinking**: Communicative learning refers to learning directly from interpreting or associating previously internalized meanings or representations with linguistic forms delivered in one or more modality codes, (i.e., auditory-speech,
visual-print, or tactile braille) similar to how children learn when they attend classes. This in turn requires language acquisition in a physically grounded way. These mechanisms interact with the processes underlying the development of thinking, which is responsible for categorizing, planning, decision-making and problem solving.

A developmental program for machines creates many interesting technical problems that can be addressed by researchers who work with computerized algorithms. Indeed, it is a great challenge to design a scalable, real-time developmental program; namely one that is open-ended, not task-specific and, therefore, capable of learning from its own history of experiences in the environment, including interactions with humans.

6. Final Remarks

This article reports on the WDL Workshop and the new cross-disciplinary initiative it represents. The Workshop raised many research issues that are of fundamental importance to artificial intelligence, neuroscience, psychology and robotics. Mental development seems to be a common research subject where these fields can find common ground. The area of CAMD raises many questions that await researchers in related fields to investigate.

In the closing Workshop discussion, participants recommended creating a website repository on development and learning (now on-line at http://www.mentaldev.org/), preparing a white paper (now published in Science [12], and establishing a regular conference series. The 2nd International Conference on Development and Learning (ICDL’02) will be held at MIT, June 12 – 15, 2002, and is described at the conference web site http://www.egr.msu.edu/icdl02/.

Author short bio:

Juyang Weng (B.Sc., Computer Science, Fudan, Shanghai, 1982, M. Sc., and Ph. D., Computer Science, University of Illinois, Urbana-Champaign, IL, 1985 and 1989, respectively) is an associate professor in the Department of Computer Science and Engineering, Michigan State University. His research interests include mental development, computer vision, autonomous mobile robots, humanoid robots, autonomous navigation, and human-machine multimodal interactions via vision, audition, touch, speech, gesture, and actions. His web page is available at www.cse.msu.edu/~weng/. Email: weng@cse.msu.edu.

Ida Stockman (M.S. Speech-Language Pathology, University of Iowa, 1965, and Ph.D. Speech-Language Pathology and Child Development, Pennsylvania State University, State College, PA, 1971) is a professor in the Departments of Audiology & Speech Sciences and Counseling, Educational Psychology and Special Education, Michigan State University. Her research interests include human development, particularly the role that culture and different sensory modalities play in the perception and acquisition of spoken language and nonverbal cognition in children with typical and atypical developmental histories. Email: stockma1@msu.edu.