Verifying the Adaptation Behavior of Embedded Systems

Klaus Schneider1 \quad Tobias Schuele1 \quad Mario Trapp2

1 Reactive Systems Group, University of Kaiserslautern
Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern, Germany

2 Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

SEAMS 2006
May 21-22, Shanghai, China
Outline

1. Introduction
2. Modeling Adaptation Behavior
3. Verifying Adaptation Behavior
4. Tool Demonstration
5. Summary and Conclusion
Improve Quality and Functionality

- changing environment (car enters a tunnel, aquaplaning)
- reliability and dependability (get safely to next garage)
- personalization for specific needs (different drivers)
Adaptation in Embedded Systems

Improve Quality and Functionality

- changing environment (car enters a tunnel, aquaplaning)
- reliability and dependability (get safely to next garage)
- personalization for specific needs (different drivers)

Reduce Costs

- concurrent systems that consist of several parts
- depending on situation not all parts active at the same time
- dynamically adapt according to currently required needs
- share parts that are not used simultaneously
Adaptation in Embedded Systems

Challenges

- embedded systems are reactive real–time systems
 - verification of functional and temporal behavior
- hybrid systems (interacting analog and digital parts)
 - verification requires abstraction to discrete domains
- safety–critical systems (aviation, automotive industry)
 - legal aspects (“it wasn’t me who pushed the brakes”)

Klaus Schneider, Tobias Schuele, Mario Trapp
Verifying the Adaptation Behavior of Embedded Systems
Adaptation in Embedded Systems

Challenges

- embedded systems are reactive real–time systems
 - verification of functional and temporal behavior
- hybrid systems (interacting analog and digital parts)
 - verification requires abstraction to discrete domains
- safety–critical systems (aviation, automotive industry)
 - legal aspects (“it wasn’t me who pushed the brakes”)

What about adaptation?

- adaptation has become increasingly complex part
- may trigger further adaptations in other components
- chain reaction of adaptations (up to 80% affected)
- can cause inconsistent and unstable configurations
- verification of adaptation behavior is a crucial concern
Modeling Adaptation Behavior

Services and Quality Descriptions

- Configuration
 - Parameters
 - Influences

- Configuration
 - Parameters
 - Influences

Type

- Mode
 - Quality

- Mode
 - Quality
Modeling Adaptation Behavior

Services and Quality Descriptions

Configuration
- Parameters
- Influences

Type
- Mode
- Quality

Variable
- Mode
- Quality

Configuration Rules

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Priority</th>
<th>Guard</th>
</tr>
</thead>
<tbody>
<tr>
<td>OccupancyDetection</td>
<td>4</td>
<td>cameramage[available]</td>
</tr>
<tr>
<td>TransponderDetection</td>
<td>3</td>
<td>transponderID[available]</td>
</tr>
<tr>
<td>MotionDetection</td>
<td>2</td>
<td>motion[available(r_point>0)]</td>
</tr>
<tr>
<td>Off</td>
<td>1</td>
<td>true</td>
</tr>
</tbody>
</table>
Modeling Adaptation Behavior

Example

Service
Occupancy-Detection
OccupancyDetection

Service
Light-Control
AdjustLight
tOff := 0;

Service
Lamp
DimLights

MotionDetection

occupancy->motion
 omissionrate = 0

dimmerValue->unavailable

SwitchLights

tOff := 5;
Synchronous Languages (Quartz)

- precise notion of concurrency, communication, and time
- detailed formal semantics (structural operational semantics)
- specifications: temporal logics \Rightarrow symbolic model checking
Verifying Adaptation Behavior

Synchronous Languages (Quartz)

- precise notion of concurrency, communication, and time
- detailed formal semantics (structural operational semantics)
- specifications: temporal logics \Rightarrow symbolic model checking

Example

```plaintext
module ABRO:
    input a,b,r: event;
    output o: event;
    loop
        [await a || await b];
        emit o;
        each r;
    spec
        safe: A G (o -> a | b);
    end
```
Tool Demonstration

Introduction
Modeling Adaptation Behavior
Verifying Adaptation Behavior
Tool Demonstration
Summary and Conclusion

Klaus Schneider, Tobias Schuele, Mario Trapp

Verifying the Adaptation Behavior of Embedded Systems
Adaptation in Embedded Systems

- react on changes in the environment (failure of sensors)
- reduce costs and increase dependability (graceful degradation)
- can cause chain reaction of adaptations in other components
Summary and Conclusion

Adaptation in Embedded Systems
- react on changes in the environment (failure of sensors)
- reduce costs and increase dependability (graceful degradation)
- can cause chain reaction of adaptations in other components

Modeling and Verification
- modeling adaptation behavior at an abstract level
- augmenting data flow with quality descriptions
- configuration rules to describe potential adaptations
- translation to synch. languages \Rightarrow symbolic model checking
 - can a certain configuration be reached at all?
 - can a system be caught in such a configuration?
 - can a certain configuration be reached infinitely often?
 - how long will it take to complete an adaptation?